These episodes make great companion listening for a long drive.
A blueprint for choosing the right fish oil supplement — filled with specific recommendations, guidelines for interpreting testing data, and dosage protocols.
Eric M. Verdin, M.D. is the fifth president and chief executive officer of the Buck Institute for Research on Aging and is a professor of Medicine at UCSF. Dr. Verdin's laboratory focuses on the role of epigenetic regulators in the aging process, the role of metabolism and diet in aging and on the chronic diseases of aging, including Alzheimer’s, proteins that play a central role in linking caloric restriction to increased healthspan, and more recently a topic near and dear to many of you, ketogenesis. He's held faculty positions at the University of Brussels, the NIH and the Picower Institute for Medical Research.
In this podcast, we talk broadly about many interesting areas in the field of aging, but of special interest is his lab’s recent publication on a cyclic ketogenic diet (alternating between keto and a regular diet) that was able to improve longevity and memory in mice when started in mid-life.
"The most remarkable thing we saw is that these older mice on the ketogenic diet showed actually better memory than younger mice, and we did not see the loss of memory function that one would normally see associated with the aging process."- @EricVerdin Click To Tweet
Some of the key topics discussed in this episode include...
"A child born in the year 2007 has a 50% change of living to be 104 years old."
The four categories of aging research: exercise, nutrition, mimetics, and rejuvenation.
Dr. Verdin discusses the role that the insulin pathway plays in aging.
Plausible genetic pathways that might be responsible for the longevity effects related to the ketogenic diet (related to BHB).
Beta-hydroxybutyrate was initially underestimated in its role as an HDAC inhibitor due to the required concentration, which is now known to be physiologically normal (especially in the presence of a ketogenic diet or fasting).
The big question of whether or not an exogenous ketone esters can recapitulate the spectrum of effects afforded by a ketogenic diet.
How high protein compensation during a ketogenic diet may actually negate some of the positive health benefits through overactivation of mTOR & IGF-1.
Dr. Verdin explains how the wide genetic variation among humans complicates the application of discoveries from mice to humans and highlights why identifying biomarkers is important for understanding the effect of interventions on specific individuals.
There is exciting new technologies that can predict your biological age including artificial intelligence that predicts your age based off facial recognition.
Replenishing falling levels of NAD+ associated with aging may be a strategy for reducing some symptoms of aging and neuronal cell death.
How PARP, a family of proteins activated by a type of DNA damage known as single strand breaks, may be one cause for the cellular NAD+ depletion associated with aging.
Thoughts about the safety of the ketogenic diet on liver health.
Reference to Valter Longo’s research on prolonged fasting. See episode.
Acetyl coenzyme A is a molecule that was first discovered to transfer acetyl groups to the citric acid cycle (Krebs cycle) to be oxidized for energy production. Now it is known to be involved in many different pathways including fatty acid metabolism, steroid synthesis, acetylcholine synthesis, acetylation, and melatonin synthesis.
The death rate from all causes of death for a population in a given time period.
Star-shaped cells found in the brain and spinal cord. Astrocytes facilitate neurotransmission, provide nutrients to neurons, maintain neuronal ion balance, and support the blood-brain barrier. Astrocytes also play a role in the repair and scarring process of the brain and spinal cord following traumatic injuries.
An intracellular degradation system involved in the disassembly and recycling of unnecessary or dysfunctional cellular components. Autophagy participates in cell death, a process known as autophagic dell death. Prolonged fasting is a robust initiator of autophagy and may help protect against cancer and even aging by reducing the burden of abnormal cells.
The relationship between autophagy and cancer is complex, however. Autophagy may prevent the survival of pre-malignant cells, but can also be hijacked as a malignant adaptation by cancer, providing a useful means to scavenge resources needed for further growth.
A bidirectional cell signaling pathway that may regulate cell function, metabolism, or other aspects of physiology. Most signaling pathways are unidirectional. However, an axis may involve two or more signaling proteins and their secreting organs or cells in a type of feedback loop. For example, the growth hormone/IGF axis, also known as the Hypothalamic–pituitary–somatotropic axis, is a highly regulated pathway involving IGF-1 (produced by the liver), growth hormone (produced by the pituitary), and growth hormone-releasing hormone (produced by the hypothalamus).
A chemical produced in the liver via the breakdown of fatty acids. Beta-hydroxybutyrate is a type of ketone body. It can be used to produce energy inside the mitochondria and acts as a signaling molecule that alters gene expression by inhibiting a class of enzymes known as histone deacetylases.
A measurable substance in an organism that is indicative of some phenomenon such as disease, infection, or environmental exposure.
A transparent nematode species (a type of roundworm), about 1mm in length. The first multicellular organism to have its whole genome sequenced. Because they have a short lifespan (about 14-15 days), they are a good model organism for aging research. Strains are inexpensive to breed and can be frozen. When subsequently thawed, they remain viable, allowing long-term storage.
The practice of long-term restriction of dietary intake, typically characterized by a 20 to 50 percent reduction in energy intake below habitual levels. Caloric restriction has been shown to extend lifespan and delay the onset of age-related chronic diseases in a variety of species, including rats, mice, fish, flies, worms, and yeast.
Compounds that induce a similar biochemical milieu in the cell as starvation or nutrient deprivation, including the reductions in cytosolic acetyl CoA and increases in protein deacetylation that serve as a trigger for the cellular autophagic machinery. Popular examples of compounds that exhibit this type of effect include: hydroxycitrate (inhibits ATP citrate lyase), spermidine (inhibits Ep300, a protein acetyltransferase), and resveratrol (activates deacetylases called sirtuins).
A gene encoding a transcription factor (CLOCK) that affects both the persistence and period of circadian rhythms. CLOCK functions as an essential activator of downstream elements in the pathway critical to the generation of circadian rhythms. In humans, polymorphisms in the CLOCK gene have been associated with increased insomnia, weight loss difficulty, and recurrence of major depressive episodes in patients with bipolar disorder.
A major contributing factor to aging, cellular senescence, and the development of cancer. Byproducts of both mitochondrial energy production and immune activity are major sources of DNA damage. Additionally, environmental stressors can increase this base level of damage. DNA damage can be mitigated by cellular repair processes; however, the effectiveness of these processes may be influenced by the availability of dietary minerals, such as magnesium, and other dietary components, which are needed for proper function of repair enzymes.
A genus of flies, often called "fruit flies," that has been heavily used in research in genetics and is a common model organism in developmental biology. Fruit flies are popular experimental animals because they are easily cultured en masse out of the wild, have a short generation time, and mutants are readily obtainable.
Any of a group of complex proteins or conjugated proteins that are produced by living cells and act as catalyst in specific biochemical reactions.
Also known as p300 HAT. A histone acetyltransferase that acetylates proteins in chromatin, causing widespread changes in gene activation. This enzyme can be inhibited by compounds such as spermidine and thereby promote autophagy.
A biomarker of aging based on alterations in an organism’s DNA methylation (DNAm) profile. Methylations occur naturally and regulate gene expression. With age, the methylation state of a gene may change. These changes are quantifiable, serving as a means to gauge biological age, which is often different from chronological age. Several variations of epigenetic clocks have been identified. They are generally categorized according to the type and number of tissues used to formulate the calculation, as well as the type of age measured (e.g., epigenetic versus phenotypic). The most widely used clocks include: - HorvathAge, which predicts intrinsic epigenetic age acceleration, a phenomenon in which an organism's aging is influenced by internal physiological factors such as normal metabolism and genetics.[1] - DNAm PhenoAge, which predicts time-to-death among people of the same chronological age, based on biomarkers of age-related disease.[2] - DNAm GrimAge, which predicts lifespan and healthspan, based on DNAm surrogates in blood, including biomarkers of aging and alterations in blood composition.[3]
Genetic control elicited by factors other than modification of the genetic code found in the sequence of DNA. Epigenetic changes determine which genes are being expressed, which in turn may influence disease risk. Some epigenetic changes are heritable.
A diet that mimics the effects of fasting on markers associated with the stress resistance induced by prolonged fasting, including low levels of glucose and IGF-1, and high levels of ketone bodies and IGFBP-1. More importantly, evidence suggests these changes in the cellular milieu are associated with a sensitization of cancer cells to chemotherapeutic drugs while simultaneously also conferring greater stress resistance to healthy cells.[1] Evidence also continues to emerge that properties of the fasting-mimicking diet, particularly its ability to cause immune cell turnover, may also make it useful in the amelioration of auto-immune diseases like multiple sclerosis.[2]
[1] Cheng, Chia-Wei, et al. "Prolonged fasting reduces IGF-1/PKA to promote hematopoietic-stem-cell-based regeneration and reverse immunosuppression." Cell Stem Cell 14.6 (2014): 810-823. [2] Choi, In Young, et al. "A diet mimicking fasting promotes regeneration and reduces autoimmunity and multiple sclerosis symptoms." Cell Reports 15.10 (2016): 2136-2146.
A molecule composed of carboxylic acid with a long hydrocarbon chain that is either saturated or unsaturated. Fatty acids are important components of cell membranes and are key sources of fuel because they yield large quantities of ATP when metabolized. Most cells can use either glucose or fatty acids for this purpose.
A protein that provides the instructions for genes responsible for the regulation of cellular replication, resistance to oxidative stress, metabolism, and DNA repair. FOXO3 may play an integral part in both longevity and tumor suppression. Variants of FOXO3 are associated with longevity in humans. Humans with a more active version of this gene have a 2.7-fold increased chance of living to be a centenarian.
The process in which information stored in DNA is converted into instructions for making proteins or other molecules. Gene expression is highly regulated. It allows a cell to respond to factors in its environment and involves two processes: transcription and translation. Gene expression can be turned on or off, or it can simply be increased or decreased.
A metabolic pathway in which the liver produces glucose from non-carbohydrate substrates including glycogenic amino acids (from protein) and glycerol (from lipids).
A survival mechanism the brain relies on during starvation. Glucose sparing occurs when the body utilizes fatty acids as its primary fuel and produces ketone bodies. The ketone bodies cross the blood-brain barrier and are used instead of glucose, thereby “sparing” glucose for use in other metabolic pathways, such as the pentose-phosphate pathway, which produces NADPH. NADPH is essential for the production of glutathione, one of the major antioxidants used in the body and brain.
An antioxidant compound produced by the body’s cells. Glutathione helps prevent damage from oxidative stress caused by the production of reactive oxygen species.
A highly branched chain of glucose molecules that serves as a reserve energy form in mammals. Glycogen is stored primarily in the liver and muscles, with smaller amounts stored in the kidneys, brain, and white blood cells. The amount stored is influenced by factors such as physical training, basal metabolic rate (BMR), and eating habits.
A series of enzyme-dependent reactions that breaks down glucose. Glycolysis converts glucose into pyruvate, releasing energy and producing ATP and NADH. In humans, glycolysis occurs in the cytosol and does not require oxygen.
The years of a person’s life spent free of disease.
The chief protein components of chromatin found in eukaryotic cell nuclei that package and order the DNA into structural units called nucleosomes acting as spools around which DNA winds, and playing a role in gene regulation.
The gradual deterioration of the immune system brought on by natural age advancement. Immunosenescence is considered the most important reason for the increased rate of infections (and cancers) in older adults and is believed to be the diminished or exhausted function of the immune system that naturally occurs with aging.
A critical element of the body’s immune response. Inflammation occurs when the body is exposed to harmful stimuli, such as pathogens, damaged cells, or irritants. It is a protective response that involves immune cells, cell-signaling proteins, and pro-inflammatory factors. Acute inflammation occurs after minor injuries or infections and is characterized by local redness, swelling, or fever. Chronic inflammation occurs on the cellular level in response to toxins or other stressors and is often “invisible.” It plays a key role in the development of many chronic diseases, including cancer, cardiovascular disease, and diabetes.
A peptide hormone secreted by the beta cells of the pancreatic islets cells. Insulin maintains normal blood glucose levels by facilitating the uptake of glucose into cells; regulating carbohydrate, lipid, and protein metabolism; and promoting cell division and growth. Insulin resistance, a characteristic of type 2 diabetes, is a condition in which normal insulin levels do not produce a biological response, which can lead to high blood glucose levels.
One of the most potent natural activators of the AKT signaling pathway. IGF-1 stimulates cell growth and proliferation, inhibits programmed cell death, mediates the effects of growth hormone, and may contribute to aging and enhancing the growth of cancer after it has been initiated. Similar in molecular structure to insulin, IGF-1 plays a role in growth during childhood and continues later in life to have anabolic, as well as neurotrophic effects. Protein intake increases IGF-1 levels in humans, independent of total caloric consumption.
A broad term that describes periods of voluntary abstention from food and (non-water) drinks, lasting several hours to days. Depending on the length of the fasting period and a variety of other factors, intermittent fasting may promote certain beneficial metabolic processes, such as the increased production of ketones due to the use of stored fat as an energy source. The phrase “intermittent fasting” may refer to any of the following:
A metabolic pathway in which organisms produce ketones. Ketogenesis occurs primarily in the mitochondria of liver cells via the breakdown of fatty acids and ketogenic amino acids. Insulin is the major hormonal regulator of ketogenesis; however, glucagon, cortisol, thyroid hormones, and catecholamines can induce greater breakdown of free fatty acids, thereby increasing the substrates available for use in the ketogenic pathway. The primary ketones used by the body for energy are acetoacetate and beta-hydroxybutyrate.
A diet that causes the body to oxidize fat to produce ketones for energy. A ketogenic diet is low in carbohydrates and high in proteins and fats. For many years, the ketogenic diet has been used in the clinical setting to reduce seizures in children. It is currently being investigated for the treatment of traumatic brain injury, Alzheimer's disease, weight loss, and cancer.
Molecules (often simply called “ketones”) produced by the liver during the breakdown of fatty acids. Ketone production occurs during periods of low food intake (fasting), carbohydrate restrictive diets, starvation, or prolonged intense exercise. There are three types of ketone bodies: acetoacetate, beta-hydroxybutyrate, and acetone. Ketone bodies are readily used as energy by a diverse array of cell types, including neurons.
Lactate is thought to participate in a sort of "lactate shuttle" where, after being produced in muscle from exercise, it is transported in to tissues like the heart, and brain, where it is used as an energy source. Lactate is one of many molecules that falls under a loose group of molecules referred to as exerkines, a broad group of exercise-induced hormonal-like factors. Evidence suggests that lactate is the preferred fuel of the brain. Additionally, rodent studies suggest that lactate mediates some of the benefits of exercise on learning and memory via inducing neuronal brain-derived neurotrophic factor (BDNF) expression.[1] In clinical studies, lactate shows promise as a treatment for inflammatory conditions including traumatic brain injury and as a means to deliver fuel to working muscles.
The three basic components of the human diet. Macronutrients are consumed in large quantities and provide necessary energy for the body. They include carbohydrates, fats, and proteins.
An enzyme that participates in genetic pathways that sense amino acid concentrations and regulate cell growth, cell proliferation, cell motility, cell survival, protein synthesis, autophagy, and transcription. mTOR integrates other pathways including insulin, growth factors (such as IGF-1), and amino acids. It plays key roles in mammalian metabolism and physiology, with important roles in the function of tissues including liver, muscle, white and brown adipose tissue, and the brain. It is dysregulated in many human diseases, such as diabetes, obesity, depression, and certain cancers. mTOR has two subunits, mTORC1 and mTORC2. Also referred to as “mammalian” target of rapamycin.
Rapamycin, the drug for which this pathway is named (and the anti-aging properties of which are the subject of many studies), was discovered in the 1970s and is used as an immunosuppressant in organ donor recipients.
The thousands of biochemical processes that run all of the various cellular processes that produce energy. Since energy generation is so fundamental to all other processes, in some cases the word metabolism may refer more broadly to the sum of all chemical reactions in the cell.
A biochemical process involving the addition or subtraction of a methyl group (CH3) to another chemical group. In epigenetics, a methyl group is added to an amino acid in a histone tail on DNA, altering the activity of the DNA segment without changing its sequence. Under- and over-methylation are referred to as hypomethylation and hypermethylation, respectively.
Vitamins and minerals that are required by organisms throughout life in small quantities to orchestrate a range of physiological functions. The term micronutrients encompasses vitamins, minerals, essential amino acids, essential fatty acids.
Tiny organelles inside cells that produce energy in the presence of oxygen. Mitochondria are referred to as the "powerhouses of the cell" because of their role in the production of ATP (adenosine triphosphate). Mitochondria are continuously undergoing a process of self-renewal known as mitophagy in order to repair damage that occurs during their energy-generating activities.
The process by which new mitochondria are made inside cells. Many factors can activate mitochondrial biogenesis including exercise, cold shock, heat shock, fasting, and ketones. Mitochondrial biogenesis is regulated by the transcription factor peroxisome proliferator-activated receptor gamma coactivator 1-alpha, or PGC-1α.
A coenzyme that is required for the production of energy in cells. NAD+ is synthesized from three major precursors: tryptophan, nicotinic acid (vitamin B3), and nicotinamide. It regulates the activity of several key enzymes including those involved in metabolism and repairing DNA damage. NAD+ levels rise during a fasted state. A group of enzymes called sirtuins, which are a type of histone deacetylase, use NAD+ to remove acetyl groups from proteins and are important mediators for the effects of fasting, caloric restriction, and the effects of the plant compound resveratrol, a so-called caloric restriction mimetic.
A precursor molecule for the biosynthesis of nicotinamide adenine dinucleotide (NAD+), a coenzyme that participates in the production of cellular energy and repair. NMN helps maintain cellular levels of NAD+, thereby facilitating NAD+-dependent cellular activities, such as mitochondrial metabolism, regulation of sirtuins, and PARP activity. Animal studies have demonstrated that NMN administration is effective in increasing NAD+ levels across multiple tissues while improving the outcome of a variety of age-related diseases. Although NMN administration has proven to be safe and to effectively increase NAD+ levels in rodents, the safety and efficacy of NMN supplementation in humans remain unknown. NMN is available in supplement form and is present in various types of food, including broccoli, avocado, and beef. It is also an intermediate compound in the NAD+ salvage pathway, the recycling of nicotinamide into NAD+.
One of four nitrogen-containing molecules that comprise DNA. A nucleotide consists of one of four chemicals, called a “base,” plus one molecule of sugar and one molecule of phosphoric acid. Nucleotides are typically identified by the first letter of their base names: adenine (A), cytosine (C), guanine (G), and thymine (T). They form specific pairs (A with T, and G with C), and their bonds provide the helical structure of the DNA strand.
The process of generating energy that occurs when mitochondria couple oxygen with electrons that have been derived from different food sources including glucose, fatty acids, and amino acids.
A result of oxidative metabolism, which causes damage to DNA, lipids, proteins, mitochondria, and the cell. Oxidative stress occurs through the process of oxidative phosphorylation (the generation of energy) in mitochondria. It can also result from the generation of hypochlorite during immune activation.
An alternate pathway for the oxidation of glucose. The pentose phosphate pathway parallels glycolysis, but does not require or produce ATP; rather, it produces NADPH, which is necessary to create the cellular antioxidant glutathione. Like glycolysis, the pentose phosphate pathway occurs in the cytoplasm.
A family of proteins involved in a number of cellular processes such as DNA repair, genomic stability, and programmed cell death (apoptosis). PARP's primary role is to detect and initiate an immediate cellular response to metabolic, chemical, or radiation-induced single-strand DNA breaks by signaling the enzymatic machinery involved in repair. NAD+ is required as substrate for generating ADP-ribose monomers. Evidence suggests that overactivation of PARP may deplete cellular stores of NAD+.
One of the three isotypes of a subfamily of nuclear receptor proteins (the PPARs) that functions as a transcription factor. PPAR-alpha is a major regulator of lipid metabolism in the liver and is activated under conditions of energy deprivation. It is necessary for the process of ketogenesis, a process that is a key adaptive response to prolonged fasting and is inducible by strict carbohydrate restriction. Activation of PPAR-alpha promotes uptake, utilization, and catabolism of fatty acids by upregulation of genes involved in fatty acid transport, fatty acid binding and activation, and peroxisomal and mitochondrial fatty acid β-oxidation. Expression of PPAR-alpha is highest in tissues that oxidize fatty acids at a rapid rate, especially the liver, but also brown adipose tissue (BAT), the heart, and kidney.
A chemical reaction that removes an acetyl functional group from a chemical compound. The presence of the acetyl functional group plays an important role in the synthesis, stability and localization of about 85% of human proteins.[1] During fasting, falling acetyl CoA levels in the cytosol initiate protein deacetylation and initiates autophagy. In general, protein deacetylation, whether from so-called caloric restriction mimetics or nutrient deprivation, is an important general inducer of autophagy.
A polyphenolic compound produced in plants in response to injury or pathogenic attack from bacteria or fungi. Resveratrol exerts a diverse array of biological effects, including antitumor, antioxidant, antiviral, and hormonal activities. It activates sirtuin 1 (SIRT1), an enzyme that deacetylates proteins and contributes to cellular regulation (including autophagy). Dietary sources of resveratrol include grapes, blueberries, raspberries, and mulberries.
Resveratrol Autophagy ↑ Deacetylases (especially SIRT1) → ↓ Protein Acetylation → Autophagy
Senescence is a response to stress in which damaged cells suspend normal growth and metabolism. While senescence is vital for embryonic development, wound healing, and cancer immunity, accumulation of senescent cells causes increases inflammation and participates in the phenotype of aging.
A molecule that allows cells to perceive and correctly respond to their microenvironment, which enables normal cellular function, tissue repair, immunity, cognition, and more. Hormones and neurotransmitters are examples of signaling molecules. There are many types of signaling molecules, however, including cAMP, nitric oxide, estrogen, norepinephrine, and even reactive oxygen species (ROS).
A class of enzymes that influence that influence aging and longevity through multiple molecular pathways. Sirtuins regulate a variety of metabolic processes, including release of insulin, mobilization of lipids, response to stress, and modulation of lifespan. They also influence circadian clocks and mitochondrial biogenesis. Sirtuins are activated when NAD+ levels rise. The dependence of sirtuins on NAD+ links their enzymatic activity directly to the energy status of the cell via the cellular NAD+:NADH ratio, the absolute levels of NAD+, NADH or nicotinamide or a combination of these variables. There are seven known sirtuins, designated as Sirt1 to Sirt7.
A cell that has the potential to develop into different types of cells in the body. Stem cells are undifferentiated, so they cannot do specific functions in the body. Instead, they have the potential to become specialized cells, such as muscle cells, blood cells, and brain cells. As such, they serve as a repair system for the body. Stem cells can divide and renew themselves over a long time. In 2006, scientists reverted somatic cells into stem cells by introducing Oct4, Sox2, Klf4, and cMyc (OSKM), known as Yamanaka factors.[1]
Distinctive structures comprised of short, repetitive sequences of DNA located on the ends of chromosomes. Telomeres form a protective “cap” – a sort of disposable buffer that gradually shortens with age – that prevents chromosomes from losing genes or sticking to other chromosomes during cell division. When the telomeres on a cell’s chromosomes get too short, the chromosome reaches a “critical length,” and the cell stops dividing (senescence) or dies (apoptosis). Telomeres are replenished by the enzyme telomerase, a reverse transcriptase.
A protein that binds to specific DNA sequences, thereby controlling the rate of transcription of genetic information from DNA to messenger RNA. A defining feature of transcription factors is that they contain one or more DNA-binding domains, which attach to specific sequences of DNA adjacent to the genes that they regulate.
Learn more about the advantages of a premium membership by clicking below.
If you enjoy the fruits of , you can participate in helping us to keep improving it. Creating a premium subscription does just that! Plus, we throw in occasional member perks and, more importantly, churn out the best possible content without concerning ourselves with the wishes of any dark overlords.