These episodes make great companion listening for a long drive.
A blueprint for choosing the right fish oil supplement — filled with specific recommendations, guidelines for interpreting testing data, and dosage protocols.
Guido Kroemer, MD, PhD, is a professor at the Faculty of Medicine of the University of Paris Descartes. He serves in a leadership capacity at multiple research and medical institutes in Paris, including the Medical Research Council (INSERM), the Gustave Roussy Comprehensive Cancer Center, the Cordeliers Research Center, and the Hôpital Européen George Pompidou. He is also an adjunct professor at the Karolinska Institute, Stockholm, Sweden.
Dr. Kroemer is an expert in immunology, cancer biology, aging, and autophagy. He is one of the most cited authors in the field of cell biology and was the most cited cell biologist for the period between 2007 and 2013. He is best known for identifying the key role that permeabilization of mitochondrial membranes plays in programmed cell death.
His work has elucidated the intricate mechanisms involved in mitochondrial cell death control, the molecular pathways associated with cell death inhibition, and the role that cancer cell death plays in inducing immune function. In fact, he demonstrated that the therapeutic success of anticancer chemotherapy is mediated by the immune response against stressed and dying tumor cells. His groundbreaking work has been recognized in numerous awards from organizations in the fields of science, medicine, pharmacology, and cancer research.
Dr. Kroemer completed his medical degree and postdoctoral training at the Collège de France, Nogent-sur-Marne. He completed his doctoral degree in molecular biology from the Autonomous University of Madrid.
Autophagy is a highly conserved adaptive response to stress. During autophagy, a spectacular event in cell biology that is observable under a microscope, the cell gathers unnecessary or dysfunctional cellular components such as protein aggregates, pathogens, or damaged organelles into vesicles and delivers them to lysosomes for destruction, releasing proteins, lipids, carbohydrates, and nucleic acids for energy and re-use. The primary goal of autophagy is the maintenance of homeostasis in the face of changing cellular conditions and stress.
Integral to the mechanisms that regulate autophagy is nutrient sensing. In particular, the cell responds to changes in cellular levels of acetyl CoA, an end product of nutrient metabolism. Acetyl CoA acetylates or deacetylates key proteins involved in autophagy (such as mTOR and AMP kinase), thereby serving as a common regulator for the many pathways that lead to autophagy induction or inhibition.
In the fed state, the body synthesizes essential cellular components from readily available macromolecules and stockpiles the surplus. In the fasted state, however, cellular reductions in acetyl CoA switch on homeostatic mechanisms that mobilize those stockpiles via autophagy. Although the duration of nutrient deprivation necessary to induce autophagy varies among mammals, when mice or human volunteers experience starvation, autophagy can be observed on the whole-body level.
Prolonged fasting – a period of voluntary starvation that typically exceeds 48 hours – sets off a wide range of metabolic events, including the activation of cellular and systemic cleanup programs such as apoptosis and autophagy. Many people may find the prolonged fast too onerous, but the fasting-mimicking diet, an approach that recapitulates many of the same effects of prolonged fasting with a hyper-low calorie, low protein, higher fat diet stretched out over a longer interval of five days, may offer a more palatable strategy for activating autophagy.
Another strategy for modulating acetyl CoA levels involves intake of caloric restriction mimetics, compounds that “trick” cells into inducing autophagy even in the setting of sufficient nutrient levels. Examples of caloric restriction mimetics include resveratrol and spermidine, two dietary compounds present in red wine and cheese, respectively.
The many health benefits associated with exercise are well known and include extension of lifespan and protection against cardiovascular diseases, diabetes, cancer and neurodegenerative diseases. Some of these benefits may be due to the fact that exercise induces autophagy in the brain and several organs involved in metabolism, including the liver, pancreas, adipose tissue, and muscles.The greatest benefits are observed with endurance training, which induces autophagy in mice, mediating the deleterious effects of diabetes and obesity.
Defective and aging mitochondria contribute to metabolic dysfunction and disease. Mitophagy, the selective degradation of dysfunctional mitochondria, helps ensure that the body’s cells are metabolically efficient. These old or defective mitochondria self-identify as dysfunctional, offering themselves for mitophagy, like martyrs on behalf of the cell. Mitophagy ultimately serves as a trigger for mitochondrial biogenesis, the process by which new mitochondria are produced. Failures in mitophagy are associated with several chronic diseases, including cardiovascular disease, kidney disease, and Alzheimer’s disease.
Parkinson's disease, a neurodegenerative disorder characterized by mitochondrial dysfunction and energy deficits in dopaminergic neurons in the brain, may be due in part to mitophagy failure. A growing body of evidence suggests that mitophagy is compromised in Parkinson's disease and promotes the accumulation of dysfunctional mitochondria. Impaired mitophagy likely contributes to the aggregation of misfolded proteins, which in turn impairs mitochondrial homeostasis.
Autophagy plays a role in triggering mechanisms of immunosurveillance by facilitating the release of ATP from dying cells, which attract the attention of myeloid cells via a special class of receptor known as purinergic receptors. Activation of this important system of immunosurveillance is a predictor of long-term efficacy of chemotherapy and may help to explain the complex relationship of autophagy with cancer, wherein the initial suppression of autophagy may help prevent attracting undue attention from the immune system, but may later facilitate ongoing transformation. In later stage cancer, autophagy may be reactivated to help cells in their pursuit to continue gaining a foothold in the otherwise hostile tumor microenvironment of the body.
In this episode, Dr. Kroemer describes the complex process of autophagy and how it influences many aspects of health and disease, including cancer, neurodegenerative disease, and aging, and how modulation of autophagy may represent a promising therapeutic approach for extending human lifespan and healthspan.
Learn more about autophagy in this topic article from FMF.
This episode is decidedly focused on autophagy, an important cellular program that is inducible by dietary fasting and has broad implications for aging and cancer. Autophagy discussion includes:
Fasting Autophagy
Nutrient deprivation → ↑ Protein Deacetylation (↓ cytosolic Acetyl CoA) + ↓ mTOR + ↑ AMP Kinase → Autophagy
Hydroxy Citrate Autophagy
↓ ATP citrate lyase activity → ↓ Protein Acetylation → Autophagy
Spermidine Autophagy
↓ Acetyltransferase activity (especially EP300) → ↓ Protein Acetylation → Autophagy
Resveratrol Autophagy
↑ Detacetylase activity (especially SIRT1) → ↓ Protein Acetylation → Autophagy
... and... more generally...
↑ Protein Deacetylation → Autophagy
The relationship between cancer and autophagy is complex...
↓ tumor suppressor gene activity → ↓ autophagy → survival of pre-malignant cells → ↑ autophagy as a malignant adaptation
How genetically inhibiting autophagy actually increases cellular sensitivity to death and how this was counterintuitive because autophagy was thought, at one time, as a type of activity predominantly concerned with actually initiating cell death.
The external signals causing autophagy.
The role of growth factors in transporting nutrients from the outside world into the intracellular space.
Autophagy as a process that destroys bioenergetic macromolecular reserves including proteins, lipids, and nucleic acids to generate energy.
How declines in the ATP (energetic) status of the cell trigger autophagy by increasing the activity of a pathway known as AMP Kinase.
How reductions in the cytosolic pool of acetyl-CoA as a consequence of reductions in glycolysis, amino acid catabolism, or beta-oxidation, ultimately result in the de-acetylation of hundreds of cellular proteins involved in autophagy. Nutrient deprivation → ↑ Protein Deacetylation (↓ cytosolic Acetyl CoA) + ↓ mTOR + ↑ AMP Kinase → Autophagy
The role of the inhibition of mTOR and activation of AMP Kinase in cellular autophagy. mTOR is a pathway robustly activated by IGF-1 and associated with increases in cell growth, proliferation, motility and protein synthesis. AMP Kinase, on the other hand, is a pathway important in regulating cellular energy homeostasis by inhibiting synthesis of fatty acids and triglycerides and activating fatty acid uptake and beta-oxidation in the liver.
The indirect relationship between protein acetylation status (and cytosolic acetyl CoA availability) and the suppression of mTOR and activation of AMP Kinase in cellular autophagy.
The possibility of using selective nutrient restriction as an autophagy-inducer instead of more generalized nutrient deprivation or fasting.
Cytoplasmic protein deacetylation as a potential surrogate marker for fasting-induced autophagy (still undergoing validation) but possibly not other forms of autophagy, such as the kind pharmacologically induced by interaction with a protein involved in vesicle-trafficking processes called Beclin 1.
How a protein called LC3 associates with structures called autophagosomes to facilitate autophagy in response to deacetylation it undergoes. Note: this sirt1-mediated deacetylation of LC3 is induced as an important response to cell starvation.
The special flow cytometry needed in order to measure some of the proteins associated with the activation of autophagosomes in autophagy.
The desirability of being able to know and test whether or not your fasting is triggering robust autophagy or not.
The minimum amount of fasting necessary to activate autophagy. (We already know prolonged fasting is a robust activator of autophagy.)
Whether or not time-restricted eating or 16:8 intermittent fasting reliably induces autophagy in any of our tissues.
The important differences between prolonged fasting in humans and the rodent animal models used in studies.
The ~12-hour half-life of IGF-1 and whether or not that has any implications for the potential of autophagy in shorter duration fasts.
The effects of long-term caloric restriction on markers of cellular autophagy in humans.
The effect of an every-other-day eating pattern in rodents and how this pattern actually mimics the longevity producing effects of caloric restriction but with the advantage of stabilizing long-term at a more normal body weight. (Note: Dr. Kroemer is quick to point out that this type of intermittent fasting is more dramatic than it would be in humans because of differences in metabolism… the animals actually experience a 10% oscillation in body weight from this pattern!)
The effect of exercise (especially endurance exercise) on autophagy in muscle tissue.
The role of autophagy as a mediator of the anti-obesity and anti-diabetic effects of endurance exercise. Study.
The differences between macroautophagy, microautophagy, and chaperone-mediated autophagy.
The difference between autophagy that is dictated by demand (nutrient stress) versus autophagy that occurs as the need arises to recycle damaged organelles.
How damaged organelles change the composition of their surfaces in order to decorate them with signals for the stimulation of their engulfment by the autophagosome.
The many, many names autophagy has when we are talking about it in the context of specific macromolecular structures and organelles (e.g. mitophagy for mitochondria, pexophagy for peroxisomes, reticulophagy for endoplasmic reticulum, ribophagy for ribosomes, and virophagy for viruses).
How autophagy from nutrient deprivation still prefers to first recycle organelles that have been slightly marked… in other words, that are already aged or slightly damaged.
How mitochondrial use ubiquitination, a process which occurs when these organelles begin to lose their membrane potential, in order to signal damage and to ensure preferential targeting by the autophagic machinery. ↓ mitochondrial transmembrane potential → ↑ ubiquitination → ↑ mitophagy
The coordinated manner in which mitophagy and mitochondrial biogenesis act together in a closed feedback loop in order to preserve mitochondrial quality while preserving the total pool of functioning mitochondria. Study.
The changes that can occur in total mitochondrial pool as cells adapt to take on new metabolic profiles through a mitophagy-mediated process. This can occur as cells differentiate into new cell types that are specialized for glycolytic energy generation.
The role autophagy plays in the prevention of neurodegenerative diseases caused by protein aggregates.
How autosomal recessive mutations (where both parents must contribute a defective gene for PD to arise in the offspring) in a kinase protein called PINK1 disrupts its ability to recruit a protein called Parkin that mediates the targeting of mitochondria for mitophagy. ↓ PINK1's kinase activity → ↓ parkin recruitment → ↓ mitophagy → ↑ accumulation of damaged mitochondria
Mitochondrial membrane permeabilization as a death signal due to the release of dangerous proteins contained in the mitochondria.
The evolutionarily-conserved sickness response (food avoidance) as a way of beneficially altering immune responses through altered metabolism and autophagy.
The surprising increase in lethality that happens when mice are force fed (glucose in this case) while exhibiting sickness response from a bacterial challenge. Study.
The effects of an anti-malarial known as chloroquine which has some cytotoxic effects in cancer cells, but is actually (surprisingly) an inhibitor of autophagy.
Studies of the lysosomal disrupter and anti-malarial chloroquine in combination with chemotherapy in the treatment of cancer.
The differential roles autophagy plays in the progression of cancer in pre-malignant cells, when it is suppressed, versus in malignant cells, when it is sometimes used as an adaptation helpful to the survival of malignant cells experiencing environmental stress. ↓ tumor suppressor gene activity → ↓ autophagy → survival of pre-malignant cells → ↑ autophagy as a malignant adaptation
How inhibition of autophagy by itself is sufficient to induce oncogenesis, particularly in leukemia.
How cells undergoing autophagy can release ATP into the extracellular space where it can function as a signal that recruits and activates immune cells against tumor antigens through the activities of purinergic receptors. ↑ autophagy → ↑ extracellular ATP → activation of purinergic receptor-mediated immunosurveillance
The importance of the triggering of this immunosurveilance system as part of the cell death associated with chemotherapy.
The class of compounds known as “caloric restriction mimetics” that affect autophagy by perturbing various pathways in such a way as to reductions in cytosolic acetyl CoA and protein deacetylation in a manner similar to nutrient deprivation. Examples include: hydroxycitrate (inhibits ATP citrate lyase), spermidine (inhibits Ep300, a protein acetyltransferase), and resveratrol (activates deacetylases).
How intestinal bacteria may produce as much as 1/3rd of the body’s spermidine and how this production rate can be manipulated by probiotic and dietary interventions.
How the ability of caloric restriction mimetics (CRMs) to induce a type of autophagy that provokes immunosurveillance potentially offers an opportunity for synergy when used in combination with chemotherapeutic agents in the treatment of cancer. Study.
How the inhibition of autophagy in malignant cells or destruction of the extracellular ATP released by cells undergoing autophagy is able to abolish the favorable interaction between caloric restriction mimetic drugs and chemotherapy.
The tendency for dietary consumption of caloric restriction mimetics, particularly hydroxy citrate, to induce autophagy and reduce weight gain in mice fed an obesogenic diet. Study.
Dr. Kroemer’s personal intermittent and prolonged fasting practices and his habit of consuming foods that may contain some natural quantities of caloric restriction mimicking compounds.
The autophagy-enhancing effect of coffee (with and without caffeine).
Acetyl coenzyme A is a molecule that was first discovered to transfer acetyl groups to the citric acid cycle (Krebs cycle) to be oxidized for energy production. Now it is known to be involved in many different pathways including fatty acid metabolism, steroid synthesis, acetylcholine synthesis, acetylation, and melatonin synthesis.
An energy-carrying molecule present in all cells. ATP fuels cellular processes, including biosynthetic reactions, motility, and cell division by transferring one or more of its phosphate groups to another molecule (a process called phosphorylation).
A protein present in the human brain, found primarily at the synapses – the junctions between neighboring neurons where the exchange of electrical signals and neuronal communication occurs. Aggregation, or clumping, of alpha-synuclein proteins is a hallmark of Parkinson's disease, a neurodegenerative disorder of the central nervous system. Hsp70, a heat shock protein, has been shown to reduce formation of alpha-synuclein oligomers and reduce associated toxicity.[1]
A neurodegenerative disorder characterized by progressive memory loss, spatial disorientation, cognitive dysfunction, and behavioral changes. The pathological hallmarks of Alzheimer's disease include amyloid-beta plaques, tau tangles, and reduced brain glucose uptake. Most cases of Alzheimer's disease do not run in families and are described as "sporadic." The primary risk factor for sporadic Alzheimer's disease is aging, with prevalence roughly doubling every five years after age 65. Roughly one-third of people aged 85 and older have Alzheimer's. The major genetic risk factor for Alzheimer's is a variant in the apolipoprotein E (APOE) gene called APOE4.
An enzyme that plays multiple roles in cellular energy homeostasis. AMP kinase activation stimulates hepatic fatty acid oxidation, ketogenesis, skeletal muscle fatty acid oxidation, and glucose uptake; inhibits cholesterol synthesis, lipogenesis, triglyceride synthesis, adipocyte lipolysis, and lipogenesis; and modulates insulin secretion by pancreatic beta-cells.
Programmed cell death. Apoptosis is a type of cellular self-destruct mechanism that rids the body of damaged or aged cells. Unlike necrosis, a process in which cells that die as a result of acute injury swell and burst, spilling their contents over their neighbors and causing a potentially damaging inflammatory response, a cell that undergoes apoptosis dies in a neat and orderly fashion – shrinking and condensing, without damaging its neighbors. The process of apoptosis is often blocked or impaired in cancer cells. (May be pronounced “AY-pop-TOE-sis” OR “AP-oh-TOE-sis”.)
An enzyme that converts citrate into acetyl CoA, which leads to protein acetylation and thus inhibits autophagy. The production of acetyl CoA also represents an important step in fatty acid biosynthesis and by converting citrate to acetyl CoA, ATP citrate lyase links the metabolism of carbohydrates, which yields citrate as an intermediate, to the production of fatty acids, which requires acetyl CoA. Hydroxy citrate is a competitive inhibitor of ATP citrate lyase and thereby reduces the cytosolic levels of acetyl CoA.
↓ ATP citrate lyase activity → ↓ Protein Acetylation → Autophagy
An intracellular degradation system involved in the disassembly and recycling of unnecessary or dysfunctional cellular components. Autophagy participates in cell death, a process known as autophagic dell death. Prolonged fasting is a robust initiator of autophagy and may help protect against cancer and even aging by reducing the burden of abnormal cells.
The relationship between autophagy and cancer is complex, however. Autophagy may prevent the survival of pre-malignant cells, but can also be hijacked as a malignant adaptation by cancer, providing a useful means to scavenge resources needed for further growth.
A protein that regulates autophagy and mediates the vesicle-trafficking processes, which, in eukaryotic cells, involves an organelle known as the Golgi apparatus. Beclin 1 is thought to play a role in multiple cellular processes, including tumorigenesis, neurodegeneration and apoptosis.
The process by which fatty acid molecules are broken down. Beta-oxidation occurs in the mitochondria and produces acetyl-CoA, FADH2, NADH, and H+. Under conditions where glucose is limited, beta-oxidation is an important preceding step for producing the acetyl-CoA needed for ketogenesis.
A measurable substance in an organism that is indicative of some phenomenon such as disease, infection, or environmental exposure.
The practice of long-term restriction of dietary intake, typically characterized by a 20 to 50 percent reduction in energy intake below habitual levels. Caloric restriction has been shown to extend lifespan and delay the onset of age-related chronic diseases in a variety of species, including rats, mice, fish, flies, worms, and yeast.
Compounds that induce a similar biochemical milieu in the cell as starvation or nutrient deprivation, including the reductions in cytosolic acetyl CoA and increases in protein deacetylation that serve as a trigger for the cellular autophagic machinery. Popular examples of compounds that exhibit this type of effect include: hydroxycitrate (inhibits ATP citrate lyase), spermidine (inhibits Ep300, a protein acetyltransferase), and resveratrol (activates deacetylases called sirtuins).
A medication used to prevent and to treat malaria. It is also occasionally used for amebiasis that is occurring outside of the intestines, rheumatoid arthritis, and lupus erythematosus. Currently it is being researched as an antiretroviral in humans with HIV-1/AIDS, an agent in chemotherapy for cancer, and its ability to inhibit lysosomal degradation of protein products during autophagy.
The aqueous component of the cytoplasm of a cell, within which various organelles and particles are suspended.
The biological process in which a cell matures and specializes. Differentiation is essential for the development, growth, reproduction, and lifespan of multicellular organisms. Differentiated cells can only express genes that characterize a certain type of cell, such as a liver cell, for example.
A type of organelle in the cells of eukaryotic organisms that forms as interconnected network of flattened, membrane-enclosed sacs or tube-like structures known as cisternae. Rough ER is studded with ribosomes and is the site of protein synthesis, whereas smooth ER functions in lipid manufacture and metabolism.
Any of a group of complex proteins or conjugated proteins that are produced by living cells and act as catalyst in specific biochemical reactions.
Also known as p300 HAT. A histone acetyltransferase that acetylates proteins in chromatin, causing widespread changes in gene activation. This enzyme can be inhibited by compounds such as spermidine and thereby promote autophagy.
A diet that mimics the effects of fasting on markers associated with the stress resistance induced by prolonged fasting, including low levels of glucose and IGF-1, and high levels of ketone bodies and IGFBP-1. More importantly, evidence suggests these changes in the cellular milieu are associated with a sensitization of cancer cells to chemotherapeutic drugs while simultaneously also conferring greater stress resistance to healthy cells.[1] Evidence also continues to emerge that properties of the fasting-mimicking diet, particularly its ability to cause immune cell turnover, may also make it useful in the amelioration of auto-immune diseases like multiple sclerosis.[2]
[1] Cheng, Chia-Wei, et al. "Prolonged fasting reduces IGF-1/PKA to promote hematopoietic-stem-cell-based regeneration and reverse immunosuppression." Cell Stem Cell 14.6 (2014): 810-823. [2] Choi, In Young, et al. "A diet mimicking fasting promotes regeneration and reduces autoimmunity and multiple sclerosis symptoms." Cell Reports 15.10 (2016): 2136-2146.
A molecule composed of carboxylic acid with a long hydrocarbon chain that is either saturated or unsaturated. Fatty acids are important components of cell membranes and are key sources of fuel because they yield large quantities of ATP when metabolized. Most cells can use either glucose or fatty acids for this purpose.
A device involved in cell counting, sorting, biomarker detection and protein engineering. Modern versions of a flow cytometer are usually laser-based.
One of the most abundant non-essential amino acids in the human body. Glutamine plays key roles in several metabolic functions, including protein and glutathione synthesis, energy production, antioxidant status, and immune function. In addition, it regulates the expression of several genes. Although the body can typically produce all the glutamine it needs, during periods of metabolic stress it must rely on dietary sources of glutamine such as meats, fish, legumes, fruits, and vegetables.
A series of enzyme-dependent reactions that breaks down glucose. Glycolysis converts glucose into pyruvate, releasing energy and producing ATP and NADH. In humans, glycolysis occurs in the cytosol and does not require oxygen.
A naturally occurring substance capable of stimulating cellular growth, proliferation, healing, and differentiation. Growth factors typically act as signaling molecules between cells. Examples include cytokines and hormones that bind to specific receptors on the surface of their target cells.
A family of proteins produced by cells in response to exposure to stressful conditions. Heat shock proteins are expressed in response to heat as well as exposure to cold and UV light, and during wound healing and tissue remodeling. Many heat shock proteins function as chaperones by stabilizing new proteins to ensure correct folding or by helping to refold proteins that were damaged by cell stress. A 30-minute 73ºC sauna session in healthy young adults has been shown to cause a robust and sustained increase in the production of heat shock proteins for up to 48 hours afterward.[1]
A critical element of the body’s immune response. Inflammation occurs when the body is exposed to harmful stimuli, such as pathogens, damaged cells, or irritants. It is a protective response that involves immune cells, cell-signaling proteins, and pro-inflammatory factors. Acute inflammation occurs after minor injuries or infections and is characterized by local redness, swelling, or fever. Chronic inflammation occurs on the cellular level in response to toxins or other stressors and is often “invisible.” It plays a key role in the development of many chronic diseases, including cancer, cardiovascular disease, and diabetes.
A peptide hormone secreted by the beta cells of the pancreatic islets cells. Insulin maintains normal blood glucose levels by facilitating the uptake of glucose into cells; regulating carbohydrate, lipid, and protein metabolism; and promoting cell division and growth. Insulin resistance, a characteristic of type 2 diabetes, is a condition in which normal insulin levels do not produce a biological response, which can lead to high blood glucose levels.
One of the most potent natural activators of the AKT signaling pathway. IGF-1 stimulates cell growth and proliferation, inhibits programmed cell death, mediates the effects of growth hormone, and may contribute to aging and enhancing the growth of cancer after it has been initiated. Similar in molecular structure to insulin, IGF-1 plays a role in growth during childhood and continues later in life to have anabolic, as well as neurotrophic effects. Protein intake increases IGF-1 levels in humans, independent of total caloric consumption.
A broad term that describes periods of voluntary abstention from food and (non-water) drinks, lasting several hours to days. Depending on the length of the fasting period and a variety of other factors, intermittent fasting may promote certain beneficial metabolic processes, such as the increased production of ketones due to the use of stored fat as an energy source. The phrase “intermittent fasting” may refer to any of the following:
Molecules (often simply called “ketones”) produced by the liver during the breakdown of fatty acids. Ketone production occurs during periods of low food intake (fasting), carbohydrate restrictive diets, starvation, or prolonged intense exercise. There are three types of ketone bodies: acetoacetate, beta-hydroxybutyrate, and acetone. Ketone bodies are readily used as energy by a diverse array of cell types, including neurons.
A type of white blood cell. Leukocytes are involved in protecting the body against foreign substances, microbes, and infectious diseases. They are produced or stored in various locations throughout the body, including the thymus, spleen, lymph nodes, and bone marrow, and comprise approximately 1 percent of the total blood volume in a healthy adult. Leukocytes are distinguished from other blood cells by the fact that they retain their nuclei. A cycle of prolonged fasting has been shown in animal research to reduce the number of white blood cells by nearly one-third, a phenomenon that is then fully reversed after refeeding.[1]
Macroautophagy is used primarily to eradicate damaged cell organelles or unused and/or damaged proteins. This involves the formation of a double membrane known as an autophagosome around the organelle marked for destruction before delivering it to a lysosome. Microautophagy, on the other hand, involves direct engulfment of cytoplasmic material by the lysosome via a process of invagination, meaning the inward folding of the lysosomal membrane.
A type of white blood cell. Macrophages engulf and digest cellular debris, foreign substances, microbes, cancer cells, and oxidized LDL in a process called phagocytosis. After phagocytizing oxidized LDL, macrophages are referred to as foam cells.
An enzyme that participates in genetic pathways that sense amino acid concentrations and regulate cell growth, cell proliferation, cell motility, cell survival, protein synthesis, autophagy, and transcription. mTOR integrates other pathways including insulin, growth factors (such as IGF-1), and amino acids. It plays key roles in mammalian metabolism and physiology, with important roles in the function of tissues including liver, muscle, white and brown adipose tissue, and the brain. It is dysregulated in many human diseases, such as diabetes, obesity, depression, and certain cancers. mTOR has two subunits, mTORC1 and mTORC2. Also referred to as “mammalian” target of rapamycin.
Rapamycin, the drug for which this pathway is named (and the anti-aging properties of which are the subject of many studies), was discovered in the 1970s and is used as an immunosuppressant in organ donor recipients.
The thousands of biochemical processes that run all of the various cellular processes that produce energy. Since energy generation is so fundamental to all other processes, in some cases the word metabolism may refer more broadly to the sum of all chemical reactions in the cell.
The collection of genomes of the microorganisms in a given niche. The human microbiome plays key roles in development, immunity, and nutrition. Microbiome dysfunction is associated with the pathology of several conditions, including obesity, depression, and autoimmune disorders such as type 1 diabetes, rheumatoid arthritis, muscular dystrophy, multiple sclerosis, and fibromyalgia.
A collective term for the community of commensal, symbiotic, and pathogenic microorganisms that live in a particular environment. The human body has multiple microbiotas, including those of the gut, skin, and urogenital regions.
Tiny organelles inside cells that produce energy in the presence of oxygen. Mitochondria are referred to as the "powerhouses of the cell" because of their role in the production of ATP (adenosine triphosphate). Mitochondria are continuously undergoing a process of self-renewal known as mitophagy in order to repair damage that occurs during their energy-generating activities.
The process by which new mitochondria are made inside cells. Many factors can activate mitochondrial biogenesis including exercise, cold shock, heat shock, fasting, and ketones. Mitochondrial biogenesis is regulated by the transcription factor peroxisome proliferator-activated receptor gamma coactivator 1-alpha, or PGC-1α.
The selective degradation of mitochondria by autophagy. It often occurs in defective mitochondria following damage or stress. Mitophagy is key in keeping the cell healthy. It promotes turnover of mitochondria and prevents accumulation of dysfunctional mitochondria, which can lead to cellular degeneration.
One of four nitrogen-containing molecules that comprise DNA. A nucleotide consists of one of four chemicals, called a “base,” plus one molecule of sugar and one molecule of phosphoric acid. Nucleotides are typically identified by the first letter of their base names: adenine (A), cytosine (C), guanine (G), and thymine (T). They form specific pairs (A with T, and G with C), and their bonds provide the helical structure of the DNA strand.
An oncogene is a mutated form of a gene ordinarily involved in the otherwise healthy regulation of normal cell growth and differentiation. Activation of an oncogene, through mutation of a proto-oncogene, promotes tumor growth. Mutations in genes that become oncogenes can be inherited or caused by environmental exposure to carcinogens. Some of the most common genes mutated in cancer are the IGF-1 receptor and its two main downstream signaling proteins: Ras and Akt.
A gene that has the potential to cause cancer. A proto-oncogene is a normal gene that regulates cell growth and proliferation but if it acquires a mutation that keeps it active all the time it can become an oncogene that allows cancer cells to survive when they otherwise would have died.
A chemical reaction in which an atom, molecule, or ion loses one or more electrons. Oxidation of biological molecules is associated with oxidative stress, a key driver of many chronic diseases.
The process of generating energy that occurs when mitochondria couple oxygen with electrons that have been derived from different food sources including glucose, fatty acids, and amino acids.
A neurodegenerative disorder that affects the central nervous system. Parkinson’s disease is caused by destruction of nerve cells in the part of the brain called the substantia nigra. It typically manifests later in life and is characterized by tremors and a shuffling gait.
Shared characteristics between different organisms due to similar ancestry
A biological pathway involved in mitochondrial function and surveillance. Severely damaged mitochondria lack sufficient membrane potential to import PINK1, which then accumulates on the outer membrane. PINK1 then recruits parkin to target the damaged mitochondria for degradation through autophagy. Due to the presence of PINK1 throughout the cytoplasm, PINK1 likely functions as a "scout" to probe for damaged mitochondria. Point or truncation mutations in PINK1 that reduce the kinase activity of the protein produce Parkinson’s disease with a broad phenotypic spectrum, from early-onset with atypical features to typical late-onset Parkinson’s disease.[1]
A class of chemical compounds produced in plants in response to stressors. Polyphenols contribute to the bitterness, astringency, color, flavor, and fragrance of many fruits and vegetables. They often serve as deterrents to insect or herbivore consumption. When consumed in the human diet, polyphenols exert many health benefits and may offer protection against development of cancers, cardiovascular diseases, diabetes, osteoporosis, and neurodegenerative diseases. Dietary sources of polyphenols include grapes, apples, pears, cherries, and berries, which provide as much as 200 to 300 mg polyphenols per 100 grams fresh weight.
A type of intermittent fasting that exceeds 48 hours. During prolonged periods of fasting, liver glycogen stores are fully depleted. To fuel the brain, the body relies on gluconeogenesis – a metabolic process that produces glucose from ketones, glycerol, and amino acids – to generate approximately 80 grams per day of glucose [1]. Depending on body weight and composition, humans can survive 30 or more days without any food. Prolonged fasting is commonly used in the clinical setting.
[1] Longo, Valter D., and Mark P. Mattson. "Fasting: molecular mechanisms and clinical applications." Cell metabolism 19.2 (2014): 181-192.
A chemical reaction that removes an acetyl functional group from a chemical compound. The presence of the acetyl functional group plays an important role in the synthesis, stability and localization of about 85% of human proteins.[1] During fasting, falling acetyl CoA levels in the cytosol initiate protein deacetylation and initiates autophagy. In general, protein deacetylation, whether from so-called caloric restriction mimetics or nutrient deprivation, is an important general inducer of autophagy.
The purinergic receptors, also known as purinoceptors, are divided into two major families: the P1, or adenosine, receptors and P2 receptors, which bind ATP and/or UTP. In the 1970s, adenosine was found to stimulate cAMP formation in brain slices. Subsequently, physiological effects of adenosine on almost all tissues have been described. These receptors have been implicated in learning and memory, locomotor and feeding behavior, and sleep. More specifically, they are involved in several cellular functions, including proliferation and migration of neural stem cells, vascular reactivity, apoptosis and cytokine secretion.
A compound initially developed as an antifungal agent. This use was abandoned, however, when it was discovered to have potent immunosuppressive and antiproliferative properties due to its ability to inhibit one of the complexes of mTOR (mTORC1). Rapamycin has since shown interesting lifespan extension properties in animals.
Oxygen-containing chemically-reactive molecules generated by oxidative phosphorylation and immune activation. ROS can damage cellular components, including lipids, proteins, mitochondria, and DNA. Examples of ROS include: peroxides, superoxide, hydroxyl radical, and singlet oxygen.
A related byproduct, reactive nitrogen species, is also produced naturally by the immune system. Examples of RNS include nitric oxide, peroxynitrite, and nitrogen dioxide.
The two species are often collectively referred to as ROS/RNS. Preventing and efficiently repairing damage from ROS (oxidative stress) and RNS (nitrosative stress) are among the key challenges our cells face in their fight against diseases of aging, including cancer.
A polyphenolic compound produced in plants in response to injury or pathogenic attack from bacteria or fungi. Resveratrol exerts a diverse array of biological effects, including antitumor, antioxidant, antiviral, and hormonal activities. It activates sirtuin 1 (SIRT1), an enzyme that deacetylates proteins and contributes to cellular regulation (including autophagy). Dietary sources of resveratrol include grapes, blueberries, raspberries, and mulberries.
Resveratrol Autophagy ↑ Deacetylases (especially SIRT1) → ↓ Protein Acetylation → Autophagy
A long-term autoimmune disorder that primarily affects joints. It typically results in warm, swollen, and painful joints. Pain and stiffness often worsen following rest. Most commonly, the wrist and hands are involved. The underlying mechanism involves the body's immune system attacking the joints.
A polyamine (an organic compound having more than two amino groups) named for having been isolated in semen. Spermidine has since been found in a variety of different tissue types, as well as foods. It is best known for its role as a potential autophagy and longevity promoter with its effects having been demonstrated in yeast, flies, worms, and human immune cells.[1]
↓ Acetyltransferase activity (especially EP300) → ↓ cytosolic Acetyl CoA → Autophagy
↓ mitochondrial transmembrane potential → ↑ ubiquitination → mitophagy (preferentially targeted)
Genes that suppress cell division or growth. Tumor suppressor genes encode proteins involved in aspects of cell growth regulation such as cell cycle arrest and apoptosis. Loss of tumor suppressor gene function promotes uncontrolled cell division and growth, which are hallmarks of cancer.
Ubiquitin is a small regulatory protein found in most tissues of eukaryotic organisms (e.g. ubiquitously). Ubiquitination refers to the the process by which ubiquitin proteins are added to cytosolic proteins in order to: alter their cellular location, mark them for degradation via the proteasome, and promote or prevent protein interactions.
Formed into or containing one or more vacuoles or small membrane-bound cavities within a cell.
A fat-soluble vitamin stored in the liver and fatty tissues. Vitamin D plays key roles in several physiological processes, such as the regulation of blood pressure, calcium homeostasis, immune function, and the regulation of cell growth. In the skin, vitamin D decreases proliferation and enhances differentiation. Vitamin D synthesis begins when 7-dehydrocholesterol, which is found primarily in the skin’s epidermal layer, reacts to ultraviolet light and converts to vitamin D. Subsequent processes convert D to calcitriol, the active form of the vitamin. Vitamin D can be obtained from dietary sources, too, such as salmon, mushrooms, and many fortified foods.
Learn more about the advantages of a premium membership by clicking below.
If you enjoy the fruits of , you can participate in helping us to keep improving it. Creating a premium subscription does just that! Plus, we throw in occasional member perks and, more importantly, churn out the best possible content without concerning ourselves with the wishes of any dark overlords.