This episode will make a great companion for a long drive.
A blueprint for choosing the right fish oil supplement — filled with specific recommendations, guidelines for interpreting testing data, and dosage protocols.
Insulin-like growth factor 1 (IGF-1) promotes the growth of existing cancer cells and contributes to aging, but also has some beneficial functions. IGF-1 is required for the growth and repair of muscles and is also necessary for producing new brain cells. During fasting, IGF-1 levels decrease and then increase upon refeeding. It is during the refeeding phase of elevated IGF-1 levels where regeneration occurs. Caloric restriction alone results in reduced IGF-1 levels and thus does not produce rejuvenating effects. In this clip, Dr. Rhonda Patrick and Dr. Valter Longo discuss how IGF-1 is involved in the regenerative aspect of the two phases of fasting and refeeding.
Rhonda: Mm-hmm, yeah. We should probably also mention the good parts of IGF-1, you know. IGF-1 plays an important role in muscle growth, muscle repair, and also it crosses the blood-brain barrier, and plays an important role along with brain-derived neurotrophic factor for growing new brain cells.
Valter: Yeah. This is why I was saying the fasting and refeeding, right? So, doing the fasting, the IGF-1 goes down, and so that store and that does everything else. But during the refeeding, IGF-1 goes up, and IGF-1 is the driver of all this regeneration. And most likely, I mean, we haven't looked in-depth, but, you know, other people have. And so, almost in a lot of regenerative process, you see IGF-1 being involved in, you know, the... And this is why I was saying that calorie restriction will have this chronic effect on lowering the factors, but never has the part B, which is after you lower it, you have to rebuild it.
Rhonda: Oh, it makes sense.
Valter: And that's why, I think, it may be only half of the solution.
A highly selective semi-permeable barrier in the brain made up of endothelial cells connected by tight junctions. The blood-brain barrier separates the circulating blood from the brain's extracellular fluid in the central nervous system. Whereas water, lipid-soluble molecules, and some gases can pass through the blood-brain barrier via passive diffusion, molecules such as glucose and amino acids that are crucial to neural function enter via selective transport. The barrier prevents the entry of lipophilic substances that may be neurotoxic via an active transport mechanism.
A type of protein that acts on neurons in the central and peripheral nervous systems. BDNF is a type of neurotrophin – or growth factor – that controls and promotes the growth of new neurons. It is active in the hippocampus, cortex, cerebellum, and basal forebrain – areas involved in learning, long term memory, and executive function. Rodent studies suggest that lactate, one of many so-called exerkines, mediates some of the benefits of exercise on learning and memory via inducing neuronal BDNF expression.[1] Exercise in combination with heat stress increases BDNF more effectively than exercise alone.[2] BDNF is a profoundly universal point of convergence for mechanistically explaining essentially all known activities that promote brain health.
The practice of long-term restriction of dietary intake, typically characterized by a 20 to 50 percent reduction in energy intake below habitual levels. Caloric restriction has been shown to extend lifespan and delay the onset of age-related chronic diseases in a variety of species, including rats, mice, fish, flies, worms, and yeast.
One of the most potent natural activators of the AKT signaling pathway. IGF-1 stimulates cell growth and proliferation, inhibits programmed cell death, mediates the effects of growth hormone, and may contribute to aging and enhancing the growth of cancer after it has been initiated. Similar in molecular structure to insulin, IGF-1 plays a role in growth during childhood and continues later in life to have anabolic, as well as neurotrophic effects. Protein intake increases IGF-1 levels in humans, independent of total caloric consumption.
A type of intermittent fasting that exceeds 48 hours. During prolonged periods of fasting, liver glycogen stores are fully depleted. To fuel the brain, the body relies on gluconeogenesis – a metabolic process that produces glucose from ketones, glycerol, and amino acids – to generate approximately 80 grams per day of glucose [1]. Depending on body weight and composition, humans can survive 30 or more days without any food. Prolonged fasting is commonly used in the clinical setting.
[1] Longo, Valter D., and Mark P. Mattson. "Fasting: molecular mechanisms and clinical applications." Cell metabolism 19.2 (2014): 181-192.
Learn more about the advantages of a premium membership by clicking below.
Every other week premium members receive a special edition newsletter that summarizes all of the latest healthspan research.