This episode will make a great companion for a long drive.
An essential checklist for cognitive longevity — filled with specific exercise, heat stress, and omega-3 protocols for boosting BDNF. Enter your email, and we'll deliver it straight to your inbox.
The longevity-conferring effects of genetics, environment, and lifestyle appear to manifest early. For example, if a man has long sperm telomeres, his children will have long telomeres at birth. In addition, a father's age at conception influences sperm telomere length and subsequently the telomere length of his children. New research will focus on determining whether telomere length at birth predicts both lifespan and healthspan. In this clip, Dr. Elissa Epel describes the effects of longer sperm telomere length on subsequent generations.
Elissa: Sperm are unlike the other types of cells, where the longer they are around and replicate, the shorter the telomere sperm opposite. So older fathers have sperm with longer telomeres, and there is an effect in the offspring. So when we do studies when we have the data to know how old was your father when you were born? That's a covariate. That's something that shapes telomere length.
Rhonda: And what's the effect in the offspring? Is it shorter or longer?
Elissa: Longer.
Rhonda: So longer and...
Elissa: So sperm telomere length is longer and that can affect the offspring telomere length to be longer.
Rhonda: Are there studies that have looked at whether or not having a longer telomere length to start predicts, you know, healthy aging or?
Elissa: Okay so that is... I believe, and I think many of us in this field believe that that is probably one of the biggest stories out there. Which is telomere length at birth, that initial setting which we know is partly genetic but partly prenatal environment and, you know, health of mom and dad and their gametes, their germline, you know, epigenetics. So that is one of the biggest determinants of their telomere length in late life. You know, we can change it a little bit but, you know, what you start with is a big factor. So no one has followed people to say like is it true that what you're born with then predicts, you know, how soon you get sick and when you die? We don't know but we think it probably is pretty big.
Rhonda: So you guys going to look at that?
Elissa: Yeah, I mean...
Rhonda: Someone should.
Elissa: Yes, absolutely.
Rhonda: And not just lifespan but like you said, you know, look, does it predict cardiovascular disease, does it predict dementia?
Elissa: Well let me tell you how important it is. National Institute of Aging which mostly studies old people, they have started to fund...they started to say okay, mid-life determines older health. So now they fund studies of mid-life. And they even funded us and our colleagues to look at pregnancy now, to see telomere length, how it's transmitted and affected at birth from social and economic disparities, race, sex, stress, how all of those shape telomere length at birth. Because they believe it is going to create a healthy trajectory of aging or not. And so that's where they're investing now.
A general term referring to cognitive decline that interferes with normal daily living. Dementia commonly occurs in older age and is characterized by progressive loss of memory, executive function, and reasoning. Approximately 70 percent of all dementia cases are due to Alzheimer’s disease.
Genetic control elicited by factors other than modification of the genetic code found in the sequence of DNA. Epigenetic changes determine which genes are being expressed, which in turn may influence disease risk. Some epigenetic changes are heritable.
The years of a person’s life spent free of disease.
Distinctive structures comprised of short, repetitive sequences of DNA located on the ends of chromosomes. Telomeres form a protective “cap” – a sort of disposable buffer that gradually shortens with age – that prevents chromosomes from losing genes or sticking to other chromosomes during cell division. When the telomeres on a cell’s chromosomes get too short, the chromosome reaches a “critical length,” and the cell stops dividing (senescence) or dies (apoptosis). Telomeres are replenished by the enzyme telomerase, a reverse transcriptase.
Learn more about the advantages of a premium membership by clicking below.
Listen in on our regularly curated interview segments called "Aliquots" released every week on our premium podcast The Aliquot. Aliquots come in two flavors: features and mashups.