This episode will make a great companion for a long drive.
An essential checklist for cognitive longevity — filled with specific exercise, heat stress, and omega-3 protocols for boosting BDNF. Enter your email, and we'll deliver it straight to your inbox.
A healthy immune system allows the body to fight bacterial and viral infections, as well as aberrant cells, which, left unchecked can progress to cancer. Insulin-like growth factor 1 (IGF-1) has some beneficial functions but is also known to promote the growth of existing cancer cells. IGF-1 levels in humans increase with carbohydrate and protein intake. It is essential to keep the IGF-1 pathway in check to limit the proliferation of cancerous cells. In this clip, Dr. Peter Attia explains the complex relationship that exists between cancer cells, the immune system, and IGF-1.
Peter: Okay. So that's the easy story.
Now the hard one, IGF. Okay. So two schools of thought on this, I am in one camp but I will acknowledge the other camp. One camp says IGF-1 is driven exclusively by amino acids. The other camp says, no, it's actually driven by amino acids and carbohydrates. And carbohydrates indirectly via insulin. So...
Rhonda: Why are those mutually exclusive? I mean...
Peter: The way I define it when I'm...there are certain people who I will not name that are prominent in the field who will argue that the carbohydrates play no role, it's virtually all protein.
Rhonda: But there is a role that they do play that's been shown, depending on...
Peter: I believe it has been shown but, I mean, there are wonderfully erudite people in this field who believe it is entirely an amino acid issue. And it is true, methionine has probably been shown to be the most active amino acid in driving IGF pathway. However, as it sounds like you agree, it's pretty clear that as insulin levels go down IGFBP-3 goes up...sorry, as IGF binding protein 3 goes up...maybe it's worth me taking a moment why that matters.
Rhonda: Yeah, probably explain that.
Peter: So most of these things, as maybe the listeners know when you have hormones floating around the body, whether it'd be testosterone, whether it'd be cortisol, whether it be thyroxine, these things, because they're typically hydrophobic, they can't just travel through the bloodstream freely. They have to be bound and carried just as cholesterol does. And so it's these binding proteins that we often don't think about that play an important role in determining how much active or bioavailable hormone is free.
So in the case of IGF-1 it gets trafficked by this IGF binding protein, and most of these binding proteins actually bear an unbelievable relationship to insulin. So sex hormone-binding globulin goes up when insulin goes down. It's very interesting, there's always this complaint that free testosterone levels will drop, all things equal, in someone who restricts carbohydrates. And I remember through hearing that empirically and not really thinking much about it until I started to, one, observe it and, two, understand why. And it's quite obvious because again, all things equal, when insulin goes down, which is usually what happens when you restrict carbohydrates, sex hormone-binding globulin goes up. That means if you have no change in testosterone level or even estradiol level, free testosterone will go down. Less testosterone is around to be unbound to the sex hormone-binding globulin.
So it's for that reason that I think that insulin and carbohydrate do play an important role in the IGF pathway. And I also think empirically, not that I like to refer to ecology or epidemiology, but when you look at ecology and epidemiology of cancer, to my knowledge the content of highly refined carbohydrate and sugar is more predictive of cancer in a society than the variety in protein content. In other words, there are cultures that have consumed larger and lesser amounts of protein that have been without mass amounts of cancer, but the same cannot be said with large amounts of these things.
Now by these things, I mean sugars and high-glycemic-index carbohydrates. The problem with that is, of course, you can't infer cause from that, but the negative to me is suggestive that at the very least, carbohydrate content matters when it comes to IGF-1 signaling.
Rhonda: Absolutely, and the way I like to think about it actually when you're discussing these two things is IGF-1 is not a cancer initiator, like, it's not going to cause the initial damage that can make a normal cell aberrant, a normal cell that acquires whatever problems it acquired to make it turn into a cell that's not cancer. What IGF-1 is really good at doing is taking that cell that's already acquired the damage.
Peter: It's an amplifier, yeah.
Rhonda: Right. And saying, "Here, keep growing. Like, no, don't die. I know there's signals in your body that are trying to kill you, but don't die." You know, whereas the refined carbohydrates, the way I always think about is that leads to a variety, a plethora of physiological processes in your body, inflammatory processes a lot of different pathways that are causing damage, that are initiating the type of damage. So it's like, well, if you have someone that's eating a terrible diet, they're eating refined carbohydrates, they're they're releasing endotoxin in their gut, they've got this some constant inflammatory process going on, they're releasing hypochlorite damage they were damaging mitochondria, damaging DNA, blah, blah, blah. Well, and then so they've acquired all these damaged cells and then they're eating a bunch of protein and activating the IGF-1 pathway, it's like dynamite. It's like, here's the damage cell and here's the signals to, like, keep living and keep growing. So I kind of...
Peter: Yeah. I mean, so you obviously alluded to this and I think many patients when I talk to them are sort of surprised to learn that every one of us has cancer. I mean, at this moment I have millions of cancer cells in my body, as do you. The good thing is virtually all of the time the problem gets eradicated, right? So either we talk about the apoptotic pathways that you describe, but even when those pathways fail our immune system is remarkable. I did my post-doc in immunotherapy so I spent about two and a half years working with T cells specifically regulatory T cells in looking at this problem, and we just take for granted how good the humoral...the cellular immune system is, rather.
So for those, again, maybe not familiar with the immunology you have your B cell system and your T cell system. These T cells, which are the ones that fight viruses, are unbelievable. When you think about how many antibiotics we have in our arsenal to fight bacterial infections, it's remarkable. Think about how many antiviral drugs we have relative to antibiotics. We have very few and we certainly don't have them for the most common viruses we acquire. And yet, virtually all of us recover in the end unharmed from the typical viral infection we get two to three times a year. That's a testament to how amazing our immune system is. And when you unleash it against cancer, it's effective 99.9% of the time. So, yeah, the name of the game is avoid the amplifiers.
Now, the other reason why I think this is an important concept that goes beyond cancer but now gets to the broader aspect of aging is, when you look at the people who live the longest, when you look at these people who live to 100 and beyond, for the most part they die of the exact same diseases as the rest of us schleps. They just get them later. That's really important because I think it offers an insight into longevity that is often overlooked. So if the people who lived to 100, 105 were all dying in car accidents and plane crashes, you might make the argument that there's two classes of citizens, right? There's the people who get chronic disease and then there's people who will never ever, ever get it and eventually they just die of something else. Because remember, the fourth leading cause of death or the fifth leading cause of death starts to become accidental stuff, once you get outside of the chronic stuff, but that's not the case.
The point is we're all, sort of, preprogrammed to go through this process, but if you want to live longer the name of the game is delaying the onset of the big three, the big three being the diseases that will kill 75% of us, so cerebrovascular and cardiovascular, cancer, and neurodegenerative. And so that brings us back to why we've got to have IGF and mTOR in check, because we've got to prevent them from being able to, sort of, amplify that.
A waxy lipid produced primarily in the liver and intestines. Cholesterol can be synthesized endogenously and is present in all the body's cells, where it participates in many physiological functions, including fat metabolism, hormone production, vitamin D synthesis, and cell membrane integrity. Dietary sources of cholesterol include egg yolks, meat, and cheese.
A steroid hormone that participates in the body’s stress response. Cortisol is a glucocorticoid hormone produced in humans by the adrenal gland. It is released in response to stress and low blood glucose. Chronic elevated cortisol is associated with accelerated aging. It may damage the hippocampus and impair hippocampus-dependent learning and memory in humans.
A type of toxin released when bacteria die. Endotoxins can leak through the intestinal wall and pass directly into the bloodstream. The most common endotoxin is lipopolysaccharide (LPS), a major component of the cell membrane of gram-negative bacteria. If LPS leaks into the bloodstream, it can trigger an acute inflammatory reaction. LPS has been linked with a number of chronic diseases, including Alzheimer’s disease, inflammatory bowel disease (Crohn’s disease or ulcerative colitis), cardiovascular disease, diabetes, obesity, autoimmune disorders (celiac disease, multiple sclerosis, and type 1 diabetes), and psychiatric disorders (anxiety and depression).
A value (between 0 and 100) assigned to a defined amount of a carbohydrate-containing food based on how much the food increases a person’s blood glucose level within two hours of eating, compared to eating an equivalent amount of pure glucose. Glucose has a glycemic index value of 100. Whereas eating high glycemic index foods induces a sharp increase in blood glucose levels that declines rapidly, eating low glycemic index foods generally results in a lower blood glucose concentration that declines gradually.
A type of reactive oxygen species (ROS) that is generated through the activation of white bloods cells, usually in response to a viral or bacterial invader, but also as a consequence of general inflammation. Hypochlorite and other ROS can damage lipids, proteins, and DNA.
Also known as insulin-like growth factor-binding protein 3. One of the six IGF binding proteins that have highly conserved structures and bind the insulin-like growth factors IGF-1 and IGF-2 with high affinity, preventing them from binding to the IGF-1 receptor (IGF1R). IGFBP-3 exerts antiproliferative effects in many cell types.
A peptide hormone secreted by the beta cells of the pancreatic islets cells. Insulin maintains normal blood glucose levels by facilitating the uptake of glucose into cells; regulating carbohydrate, lipid, and protein metabolism; and promoting cell division and growth. Insulin resistance, a characteristic of type 2 diabetes, is a condition in which normal insulin levels do not produce a biological response, which can lead to high blood glucose levels.
One of the most potent natural activators of the AKT signaling pathway. IGF-1 stimulates cell growth and proliferation, inhibits programmed cell death, mediates the effects of growth hormone, and may contribute to aging and enhancing the growth of cancer after it has been initiated. Similar in molecular structure to insulin, IGF-1 plays a role in growth during childhood and continues later in life to have anabolic, as well as neurotrophic effects. Protein intake increases IGF-1 levels in humans, independent of total caloric consumption.
An enzyme that participates in genetic pathways that sense amino acid concentrations and regulate cell growth, cell proliferation, cell motility, cell survival, protein synthesis, autophagy, and transcription. mTOR integrates other pathways including insulin, growth factors (such as IGF-1), and amino acids. It plays key roles in mammalian metabolism and physiology, with important roles in the function of tissues including liver, muscle, white and brown adipose tissue, and the brain. It is dysregulated in many human diseases, such as diabetes, obesity, depression, and certain cancers. mTOR has two subunits, mTORC1 and mTORC2. Also referred to as “mammalian” target of rapamycin.
Rapamycin, the drug for which this pathway is named (and the anti-aging properties of which are the subject of many studies), was discovered in the 1970s and is used as an immunosuppressant in organ donor recipients.
A sulfur-containing amino acid that is a constituent of most proteins. It is an essential nutrient in the diet of vertebrates. Methionine restriction in lower organisms has been shown to extend lifespan.
Tiny organelles inside cells that produce energy in the presence of oxygen. Mitochondria are referred to as the "powerhouses of the cell" because of their role in the production of ATP (adenosine triphosphate). Mitochondria are continuously undergoing a process of self-renewal known as mitophagy in order to repair damage that occurs during their energy-generating activities.
Also known as T regulatory cells or Tregs. A component of the immune system that suppress immune responses of other cells. This is an important "self-check" build into the immune system to prevent excessive reactions. Regulatory T cells come in many forms with the most well-understood being those that express CD4, CD25, and Foxp3 (CD4+CD25+ regulatory T cells).
A glycoprotein that binds to sex hormones, and is produced mostly by the liver. Testosterone and estradiol circulate in the bloodstream bound mostly to SHBG. Only around 1-2% is unbound or "free", and thus biological active. The relative binding affinity of various sex steroids for SHBG is dihydrotestosterone (DHT) > testosterone: androstenediol> estradiol> estrone.
The primary male sex hormone. Testosterone is critical to the maintenance of fertility and secondary sexual characteristics in males. Low testosterone levels may increase risk of developing Alzheimer’s disease.
Learn more about the advantages of a premium membership by clicking below.
Listen in on our regularly curated interview segments called "Aliquots" released every week on our premium podcast The Aliquot. Aliquots come in two flavors: features and mashups.