This episode will make a great companion for a long drive.
An essential checklist for cognitive longevity — filled with specific exercise, heat stress, and omega-3 protocols for boosting BDNF. Enter your email, and we'll deliver it straight to your inbox.
Events experienced during periods of wakefulness trigger the activity of different neurons in the brain. During sleep, the brain "relives" those events by triggering the activity of the same neurons – at 10 to 20 times the original speed. This process, known as long-term potentiation, stabilizes memories by serving as a pruning mechanism, selectively strengthening strongly associated memories and weakening weakly associated ones. In this clip, Dr. Matthew Walker describes how studies in rats and humans demonstrate that the brain "replays" events and experiences to facilitate learning.
Rhonda: I remember reading somewhere that when you sleep, and this is related to what you were just talking about, that your brain sort of replays, like, electrical-activity-wise, it looks like you're literally, like, reliving the same thing you just learned or something. Is that...
Matt: That's absolutely correct. So these studies firstly happened in animals, and we've now been replicating some of them with brain imaging, with MRI scans in humans. Hard to believe, but we can do it. But the original findings were fascinating. They would place electrodes into that structure that we spoke about, the hippocampus, which also rats have as well, and it helps rats learn spatial navigation.
And they would place lots of electrodes into this part of the brain. And as the rat would run around the maze and learn the maze, individual cells would fire, and they would spatially code which part of the maze the rat was in. So different cells are mapping different parts. It's like sort of navigating a route from your home to work. Different sort of cells are coding the journey along the way.
Rhonda: Yeah. I'd probably would suck at doing that, but...
Matt: I think, yeah, yeah. I lost that. Yeah, some people say it's a male aspect of the gene, but I definitely lost it. Anyway, but what is delightful was that you could sort of hang, you know, a sound tone on each one of these electrodes. And what you would hear, and this is just, you know, for audio, you would hear sort of "buh buh buh bump, buh buh buh bump, buh buh buh bump," as the rat was running around the maze, as these cells were learning, encoding, and creating this kind of memory circuit essentially.
And, yeah, you know, "buh buh buh bump," off it goes. But what was genius is that they kept recording. And as the rat fell asleep, what did they hear? And it wasn't just static random firing, which is what we thought typically happens during sleep. In that static of electrical impulses at night, in a sea of electrical noise, came out a very clear, predictive, message, which was "brrrmp, brrrmp, brrrmp." It was exactly the same temporal sequence "buh buh buh bump, buh buh buh bump, buh buh buh bump," but it was sped up. And we now know that it's during sleep that we replay, but we replay at somewhere between 10 to 20 times the speed.
So it's as though you're kind of, you know, you've done the, you know, recording of whatever happened during the day, but then it gets replayed but at times 20 or times 10. "Brrrp, brrrp, brrrp, brrrp, brrrp."
Rhonda: Wow. So is this is a long-term potentiation part? Is this where it's solidifying?
Matt: Yeah.
Rhonda: Now what stage of sleep is that? I know you mentioned...
Matt: So that's during deep non-REM sleep.
Rhonda: Deep.
Matt: Yup, that we see that.
Rhonda: It's the sleep I'm always trying to optimize for.
A small organ located within the brain's medial temporal lobe. The hippocampus is associated primarily with memory (in particular, the consolidation of short-term memories to long-term memories), learning, and spatial navigation. Amyloid-beta plaque accumulation, tau tangle formation, and subsequent atrophy in the hippocampus are early indicators of Alzheimer’s disease.
The long-lasting strengthening of synapses (connections) between nerve cells. LTP is associated with the learning and memory functions of the hippocampus and other structures in the brain. It allows nerve cells that fire in a correlated manner in a given activity to increase their connection strength with each other, while decreasing the strength of connectivity between neurons that do not take part in the activity.
A phase of sleep characterized by slow brain waves, heart rate, and respiration. NREM sleep occurs in four distinct stages of increasing depth leading to REM sleep. It comprises approximately 75 to 80 percent of a person’s total sleep time.
Learn more about the advantages of a premium membership by clicking below.
The FoundMyFitness Q&A happens monthly for premium members. Attend live or listen in our exclusive member-only podcast The Aliquot.