This episode will make a great companion for a long drive.
A blueprint for choosing the right fish oil supplement — filled with specific recommendations, guidelines for interpreting testing data, and dosage protocols.
Evidence continues to emerge that illustrates that the fasting-mimicking diet, particularly its ability to cause immune cell turnover, may provide beneficial effects in the treatment of auto-immune diseases such as multiple sclerosis. In animal studies, all mice with multiple sclerosis on the fasting-mimicking diet exhibited decreased clinical symptoms, and 20 percent recovered fully. Fasting is rejuvenating because autoimmune cells are destroyed and replaced with healthy cells upon refeeding. Although additional clinical trials are needed, patients with multiple sclerosis experienced improvements in physical, mental, emotional, and social functioning with the fasting-mimicking diet. In this clip, Dr. Valter Longo describes how the fasting-mimicking diet can be beneficial in the treatment of various diseases, including multiple sclerosis.
Rhonda: You mentioned the multiple sclerosis with your fasting-mimicking diet, and also the fact that this diet, sort of, shifted to a more fat-burning state, which is, sort of, it's definitely in line with ketosis, which you can get from fasting, but also in line with people that are doing a more ketogenic type of diet. And in your clinical study with people with multiple sclerosis, or was it in the mouse, one of the studies you had. I think it was the human study, do you wanna talk about that? You had a ketogenic diet, you had the fasting-mimicking diet.
Valter: Yeah, we did the same in mice and human, right? So, it was a fasting-mimicking diet and ketogenic diet in both cases. And in the mice, of course, we could demonstrate some things, and there's very clear effects. Which was, the fasting-mimicking diet causes the white blood cells, so the immune cells, as I mentioned earlier, to be destroyed, partially destroyed. And then, it turns on the stem cells. And when you make new cells, of course, they're no longer autoimmune, right? So, the original cells are autoimmune, they're attacking the oligodendrocytes in the spinal cord.
The new cells, we've shown they're no longer immune. And these leads to about 20 percent of the mice being disease-free, right? So, I mean, 20 percent of mice are cured from this autoimmunity, which is very much like multiple sclerosis. And the other thing that happens is that the oligodendrocytes with the inflammation goes down, right? So, I mean, the general inflammatory state, around the spinal cord particularly, goes down. And so, this is very important because it allows the progenitor cells or the ones that give rise to new myelin, so they rebuild the spinal cord. They can now do their job and regenerate the system. So, now, again, as I mentioned earlier, for cancer, you have this coordinated effect, which you take the bad cells, replace them with the new cells, and then block the inflammation, rebuild the spinal cord. Now, you can say this is incredible, this is magic, right?
Rhonda: Right.
Valter: Well, again, it's not, it's just that the body has to have this ability. Like you cut yourself, the system that goes to work is incredible, right?
Rhonda: Mm-hmm.
Valter: And so, it's like saying, you know, if I found a way to regenerate part of my arm by fooling the system into thinking that it just got cut everywhere, right? If you wanna see fasting, you can see it like that. And that's why it looks so magical, is because it is an evolved process that has been, you know, been evolving for billions of years, and so, it knows exactly what to do to fix a series of problems.
Rhonda: Yeah.
Valter: I mean, if you can see the wound, you know, in the spinal cord as you would think of as the cut in the skin, so...
Rhonda: I have this thought I wanna say, but also you should the people with multiple sclerosis had improvements according to some tests or something as well, right, with the fasting-mimicking diet, and also the ketogenic diet, which...
Valter: Yeah, and also the ketogenic. Last saw with the ketogenic diet, and this is Markus Bock, in Berlin, that was the lead person in the study. But, I mean, the amazing thing is that a week of fasting, followed by Mediterranean diet, which is really a regular diet, did better than six months of ketogenic diet, right?
Rhonda: Oh, wow.
Valter: So, continuous, right?
Rhonda: Okay.
Valter: And that's what makes it very impressive...
Rhonda: So wait, it was one week of fasting-mimicking diet.
Valter: One single time, right.
Rhonda: Five days, and then 25...
Valter: Seven days.
Rhonda: Seven days, and then the rest of Mediterranean...
Valter: And then, the rest of the six months, a regular Mediterranean diet.
Rhonda: Oh, really, just one?
Valter: Yeah.
Rhonda: Wow, that is...
Valter: This is what makes it remarkable, you know. So, now, we're approaching the FDA, and I think we're going to propose one cycle every two months. And, you know, so hopefully that...
Rhonda: For another trial, for another clinical?
Valter: Yeah, a much larger trial.
Rhonda: Is this something that can be available to physicians that are treating people with multiple sclerosis, or oncologists that are treating cancer patients? Because you've, kind of, shown, you know, you've shown that this is a very powerful metabolic therapy that can be used to...honestly, it seems like if we're talking about getting rid of damaged cells and replacing them with a new fully functional ones, it can be applied to a lot of diseases.
Valter: Yeah, there is no doubt, yeah. So, we're now doing mouse working many autoimmune diseases. For example, we're doing in cognitive diseases, and so, yes. What we're saying now to clinicians is the following, and to patient is the following, and sometimes we get attacked for this, but I really feel that this is the way to do it. Which is, if you feel, if there is a treatment, whether it's multiple sclerosis, another autoimmunity, or a degenerative disease, or diabetes, or cardiovascular disease, I mean, all these things that we tested in some way clinically. But if you can wait because there's something that works already very well for you, then wait, right? You shouldn't try something, "This is not fully tested," meaning that we don't have a, "Yes, this works." You only get that when you do 2,000 patients, or, you know, let's say at least 1,000, right? And then, you have to look at the statistics, you have to look at the response, etc., etc.
We're not there yet. So, we're saying, "If you can wait, wait." If you cannot wait because, you know, you have multiple sclerosis, and you cannot take it anymore, or you have cancer, and you're stage four, or even you're stage one and you're getting devastated by the side effects, so go to your oncologist, your cardiologist, your diabetologist, your immunologist, whatever, and say," I can't take this anymore. This is not working." And, of course, there's gotta be a decision made by the clinicians together with the patient saying, you know, "Should we take a risk, you know, in adding to this fasting-mimicking diet to the treatment?" And that's together, they have to come up with an answer, is a worth the risk? And to some people, it is. You know, we've had some people with Crohn's disease, they said, you know, "I can't wait anymore," and they did it, and they did extremely well, you know, after the fasting-mimicking diet. So, we haven't published that yet. And so, I think same for multiple sclerosis and all these diseases, you have to see where you're at, can you wait, can you not, is there something that is working that they make the decision, and is it for now or is it for five years from now?
Rhonda: Yeah, I think that makes a lot of sense.
An immune disorder characterized by an immune response to and subsequent destruction of the body’s own tissue. The causes of autoimmune diseases are not known, but a growing body of evidence suggests they may be due to interactions between genetic and environmental factors. Autoimmune diseases affect approximately 7 percent of the population in the United States and are more common in women than in men. Examples include type 1 diabetes, Hashimoto’s thyroiditis, lupus, and multiple sclerosis.
An inflammatory bowel disease that causes inflammation of the lining of the digestive tract, which can lead to abdominal pain, diarrhea, fatigue, weight loss and malnutrition.
A diet that mimics the effects of fasting on markers associated with the stress resistance induced by prolonged fasting, including low levels of glucose and IGF-1, and high levels of ketone bodies and IGFBP-1. More importantly, evidence suggests these changes in the cellular milieu are associated with a sensitization of cancer cells to chemotherapeutic drugs while simultaneously also conferring greater stress resistance to healthy cells.[1] Evidence also continues to emerge that properties of the fasting-mimicking diet, particularly its ability to cause immune cell turnover, may also make it useful in the amelioration of auto-immune diseases like multiple sclerosis.[2]
[1] Cheng, Chia-Wei, et al. "Prolonged fasting reduces IGF-1/PKA to promote hematopoietic-stem-cell-based regeneration and reverse immunosuppression." Cell Stem Cell 14.6 (2014): 810-823. [2] Choi, In Young, et al. "A diet mimicking fasting promotes regeneration and reduces autoimmunity and multiple sclerosis symptoms." Cell Reports 15.10 (2016): 2136-2146.
A critical element of the body’s immune response. Inflammation occurs when the body is exposed to harmful stimuli, such as pathogens, damaged cells, or irritants. It is a protective response that involves immune cells, cell-signaling proteins, and pro-inflammatory factors. Acute inflammation occurs after minor injuries or infections and is characterized by local redness, swelling, or fever. Chronic inflammation occurs on the cellular level in response to toxins or other stressors and is often “invisible.” It plays a key role in the development of many chronic diseases, including cancer, cardiovascular disease, and diabetes.
A diet that causes the body to oxidize fat to produce ketones for energy. A ketogenic diet is low in carbohydrates and high in proteins and fats. For many years, the ketogenic diet has been used in the clinical setting to reduce seizures in children. It is currently being investigated for the treatment of traumatic brain injury, Alzheimer's disease, weight loss, and cancer.
A diet pattern thought to confer health benefits found traditionally in Mediterranean countries, characterized especially by a high consumption of vegetables, olive oil, and a moderate consumption of protein.
A type of glial cell that is involved in the production of myelin, providing support and insulation to axons in the central nervous system. A single oligodendrocyte can extend its processes to 50 axons, wrapping approximately 1 micrometer of myelin sheath around each axon.
Undifferentiated descendants of stem cells. Unlike stem cells, progenitor cells can differentiate into cells of a particular lineage only and they cannot divide and reproduce indefinitely. Progenitor cells show potential in the fields of plastic and reconstructive surgery, ophthalmology, and heart and blood disorders.
A type of intermittent fasting that exceeds 48 hours. During prolonged periods of fasting, liver glycogen stores are fully depleted. To fuel the brain, the body relies on gluconeogenesis – a metabolic process that produces glucose from ketones, glycerol, and amino acids – to generate approximately 80 grams per day of glucose [1]. Depending on body weight and composition, humans can survive 30 or more days without any food. Prolonged fasting is commonly used in the clinical setting.
[1] Longo, Valter D., and Mark P. Mattson. "Fasting: molecular mechanisms and clinical applications." Cell metabolism 19.2 (2014): 181-192.
A cell that has the potential to develop into different types of cells in the body. Stem cells are undifferentiated, so they cannot do specific functions in the body. Instead, they have the potential to become specialized cells, such as muscle cells, blood cells, and brain cells. As such, they serve as a repair system for the body. Stem cells can divide and renew themselves over a long time. In 2006, scientists reverted somatic cells into stem cells by introducing Oct4, Sox2, Klf4, and cMyc (OSKM), known as Yamanaka factors.[1]
Learn more about the advantages of a premium membership by clicking below.
Every other week premium members receive a special edition newsletter that summarizes all of the latest healthspan research.