An essential checklist for cognitive longevity — filled with specific exercise, heat stress, and omega-3 protocols for boosting BDNF. Enter your email, and we'll deliver it straight to your inbox.
Your mitochondria are what give you energy through the process of oxidative phosphorylation, which consumes oxygen to generate ATP, the energetic currency of your cells. They supply fuel to every single type of cell in your body, from muscle to neuron, to keep your cells functioning at their best. Your mitochondrial health is strongly tied to your fitness both in terms of physical performance and even longevity. It is your mitochondria that provide nourishment during injury to speed up wound healing and recovery. In this post, I am going to explain how optimizing your magnesium levels, an essential mineral that 45% of the US population is deficient in, can help you maximize your mitochondria in order to enhance your performance.
High-intensity interval training (HIIT) has repeatedly proven to be an excellent way to improve exercise performance in both non-athletes and athletes. One of the ways HIIT improves performance is by increasing oxidative capacity. Oxidative capacity is a term that refers to the ability of muscle to utilize (or consume) oxygen. Oxidative capacity not only depends on the availability of oxygen (this is what most people focus on) but also critically relies on your mitochondria, which are the tiny units inside your muscle cells that actually consume oxygen and produce ATP in the process. This is a critical point that should not be minimized: it's ultimately the abundant production of ATP that enhances performance and prevents muscle fatigue.
At the level of the mitochondria, there are two ways in which studies have shown you can enhance your oxidative capacity:
One of the ways HIIT increases oxidative capacity -- and thus, performance -- is by increasing your mitochondrial mass, which is the number of mitochondria per muscle cell. Studies have shown that even just one session of HIIT results in mitochondrial biogenesis (the production of new mitochondria) within muscle cells.
Herein lies the problem: remember how I mentioned that 45% of people in the U.S. are deficient in magnesium? In order to produce new mitochondria each of your existing mitochondria have to synthesize their genome anew (yes, mitochondria have their own genome) and this depends on enzymes that require magnesium as a cofactor to do just that (1,2). If your magnesium levels are inadequate, then your ability to boost mitochondrial number during HIT will be dampened, thus, compromising performance and the mitochondrial mass you would have otherwise gained as a consequence of your hard work and effort. If your magnesium levels are inadequate, then your ability to boost mitochondrial number during HIT will be dampened, thus, compromising performance and the mitochondrial mass you would have otherwise gained as a consequence of your hard work and effort.
The second way you can maximize your mitochondria is by making them more efficient at producing ATP. It is well known that intense exercise induces oxidative stress and damage to your mitochondria, which dampens their ATP production (translation: lower oxidative capacity). But, your mitochondria have the ability to repair damage done to them using the same magnesium-dependent enzymes that I just mentioned. This means that if adequate levels of magnesium are not maintained (e.g. you're part of the 45%), your oxidative capacity will suffer because of a decline in the rate of repair of your existing mitochondria.
The role magnesium plays in mitochondrial health is only one of a multitude of reasons why you should routinely get your magnesium levels tested. When in doubt you should increase your consumption of dark green leafy vegetables such as spinach and kale or almonds, which are all high in magnesium. One other reason that magnesium is good for mitochondria, which I'll save for a future post, is this: energy production in the form of ATP is critical for nearly all wound-healing processes. Since your mitochondria are the centers of ATP production, then mitochondrial health is key to decreasing wound healing time.
Listen in on our regularly curated interview segments called "Aliquots" released every week on our premium podcast The Aliquot. Aliquots come in two flavors: features and mashups.