This episode will make a great companion for a long drive.
An essential checklist for cognitive longevity — filled with specific exercise, heat stress, and omega-3 protocols for boosting BDNF. Enter your email, and we'll deliver it straight to your inbox.
Metformin mimics several pathways associated with caloric restriction and fasting. The body perceives these interventions as stressors and then adapts, ultimately developing metabolic flexibility. Dr. D'Agostino proposes that metabolic interventions, such as restricting calories and entering ketosis, for example, may provide additional benefits when practiced cyclically. In this clip, Dr. Dominic D'Agostino explains how the periodic use of fasting and associated practices may provide health benefits.
Dom: But I think it's influencing the absorption of B12 in some way that I don't really know.
Rhonda: Does metformin...is it doing anything in addition to mimicking a lot of the same signaling pathways that caloric restriction does? Like, is there something additional that...you know?
Dom: Yeah, yeah, AMP kinase, for sure. So without a doubt, I mean, it's mimicking many of the pathways of associated with calorie restriction and with fasting. To what degree it's mimicking that relative to a length or duration of fasting? I don't know. We're doing some work right now looking at AMP kinase and mTOR, and downstream and upstream signaling insulin and these things, and trying to get a picture of this, at least in a rodent model. And then, I'd like to ultimately replicate some of this stuff in humans, but what I think, I think metformin would be best used maybe in pulsing it a few times a year. A lot of these things, metabolic interventions tend to work best when you cycle them, I think. And I really have not been doing that, but I think it's a theory that I have been working on. I need my scrapbook.
Rhonda: Why do you think that is?
Dom: Because your body is similar with ketoadaptation that your body can, kind of, reset to that level, initially fasting on the ketogenic diet is sort of a stress and it can induce a hormetic effect in gene transcription and then we, sort of, get used to that. You know, our gluconeogenesis is upregulated to that level, but I think it's good to maybe pick probably not a high-carb diet, but maybe a Paleo diet a low-carb ketogenic diet and maybe something in between and do some intermittent fasting on occasional days. So I think this promotes metabolic flexibility. It allows our body to adapt to different situations without being, kind of, overwhelmed by the stressor of it. So I think, to some extent, it is hormesis. And interestingly, metformin causes mitochondrial stress, and actually, mitochondrial damage. Some researchers coined the term that it's stimulating reactive oxygen species production and causing mitochondria dysfunction, metformin is, and this is kind of well known in the field. So the general feeling is that, "Well, if I take metformin and I go exercise, why is it not killing my exercise capacity or my VO2 max or making me lethargic or tired?" It's not doing that, actually I think it's enhancing. There was a [crosstalk 01:25:34] study.
Rhonda: Does it affect biogenesis?
Dom: It does. So yeah, so the thought that it's kind of stimulating, there's a hormetic effect. It's damaging the mitochondria, some people believe this, and you get a secondary, yeah, effect through that way, like it's, kind of like an exercise drug. But I approached it from the perspective that metformin could lower blood glucose at least if it was high and it activated AMP kinase, and it may decrease circulating insulin. So I approached it as a cancer drug from that perspective, but the more conferences we go to, there's a plethora of data coming out of metformin and a lot of people are studying it from the perspective of impaired complex I or complex II activity in the mitochondria. So they're looking at it from that perspective.
Rhonda: Interesting.
Dom: I know.
Rhonda: Yeah, it's super interesting.
An enzyme that plays multiple roles in cellular energy homeostasis. AMP kinase activation stimulates hepatic fatty acid oxidation, ketogenesis, skeletal muscle fatty acid oxidation, and glucose uptake; inhibits cholesterol synthesis, lipogenesis, triglyceride synthesis, adipocyte lipolysis, and lipogenesis; and modulates insulin secretion by pancreatic beta-cells.
The practice of long-term restriction of dietary intake, typically characterized by a 20 to 50 percent reduction in energy intake below habitual levels. Caloric restriction has been shown to extend lifespan and delay the onset of age-related chronic diseases in a variety of species, including rats, mice, fish, flies, worms, and yeast.
The first enzyme in the electron transport chain. Complex I (also known as NADH Coenzyme Q oxidoreductase) is found in the mitochondria of eukaryotes and the plasma membranes of some bacteria. It couples the oxidation of NADH and the reduction of ubiquinone to provide the electrical gradient necessary to produce ATP. Complex I and its partner enzyme, complex III, are the primary sites of reactive oxygen species production in mitochondria. Mutations in complex I are associated with many disease conditions, including Parkinson's disease and Alzheimer's disease.
A metabolic pathway in which the liver produces glucose from non-carbohydrate substrates including glycogenic amino acids (from protein) and glycerol (from lipids).
Biological responses to low-dose exposures to toxins or other stressors such as exercise, heat, cold, fasting, and xenohormetics. Hormetic responses are generally favorable and elicit a wide array of protective mechanisms. Examples of xenohormetic substances include plant polyphenols – molecules that plants produce in response to stress. Some evidence suggests plant polyphenols may have longevity-conferring effects when consumed in the diet.
A peptide hormone secreted by the beta cells of the pancreatic islets cells. Insulin maintains normal blood glucose levels by facilitating the uptake of glucose into cells; regulating carbohydrate, lipid, and protein metabolism; and promoting cell division and growth. Insulin resistance, a characteristic of type 2 diabetes, is a condition in which normal insulin levels do not produce a biological response, which can lead to high blood glucose levels.
A broad term that describes periods of voluntary abstention from food and (non-water) drinks, lasting several hours to days. Depending on the length of the fasting period and a variety of other factors, intermittent fasting may promote certain beneficial metabolic processes, such as the increased production of ketones due to the use of stored fat as an energy source. The phrase “intermittent fasting” may refer to any of the following:
The end results of a physiological process in which your body has biochemically, physiologically, and metabolically shifted from using primarily glucose to using glucose and equal, or in some cases more, fatty acids and ketones for fuel. Being adapted represents an increase in production, utilization and metabolism, general oxidative capacity of cells, as well as actual ability to transport ketones.
A diet that causes the body to oxidize fat to produce ketones for energy. A ketogenic diet is low in carbohydrates and high in proteins and fats. For many years, the ketogenic diet has been used in the clinical setting to reduce seizures in children. It is currently being investigated for the treatment of traumatic brain injury, Alzheimer's disease, weight loss, and cancer.
An enzyme that participates in genetic pathways that sense amino acid concentrations and regulate cell growth, cell proliferation, cell motility, cell survival, protein synthesis, autophagy, and transcription. mTOR integrates other pathways including insulin, growth factors (such as IGF-1), and amino acids. It plays key roles in mammalian metabolism and physiology, with important roles in the function of tissues including liver, muscle, white and brown adipose tissue, and the brain. It is dysregulated in many human diseases, such as diabetes, obesity, depression, and certain cancers. mTOR has two subunits, mTORC1 and mTORC2. Also referred to as “mammalian” target of rapamycin.
Rapamycin, the drug for which this pathway is named (and the anti-aging properties of which are the subject of many studies), was discovered in the 1970s and is used as an immunosuppressant in organ donor recipients.
A drug commonly used for the treatment of type 2 diabetes. Metformin is in a class of antihyperglycemic drugs called biguanides. It works by decreasing gluconeogenesis in the liver, reducing the amount of sugar absorbed in the gut, and increasing insulin sensitivity. A growing body of evidence indicates that metformin modulates the aging processes to improve healthspan and extend lifespan. Furthermore, metformin may prevent genomic instability by scavenging reactive oxygen species, increasing the activities of antioxidant enzymes, inhibiting macrophage recruitment and inflammatory responses, and stimulating DNA damage responses and DNA repair.[1]
[1] Najafi, Masoud, et al. "Metformin: Prevention of genomic instability and cancer: A review." Mutation Research/Genetic Toxicology and Environmental Mutagenesis 827 (2018): 1-8.
Tiny organelles inside cells that produce energy in the presence of oxygen. Mitochondria are referred to as the "powerhouses of the cell" because of their role in the production of ATP (adenosine triphosphate). Mitochondria are continuously undergoing a process of self-renewal known as mitophagy in order to repair damage that occurs during their energy-generating activities.
The process by which new mitochondria are made inside cells. Many factors can activate mitochondrial biogenesis including exercise, cold shock, heat shock, fasting, and ketones. Mitochondrial biogenesis is regulated by the transcription factor peroxisome proliferator-activated receptor gamma coactivator 1-alpha, or PGC-1α.
A diet based mainly on foods presumed to be available to paleolithic humans. It includes vegetables, fruits, nuts, roots, meat, and organ meats while excluding foods such as dairy products, grains, refined sugar, legumes, and other processed foods.
Oxygen-containing chemically-reactive molecules generated by oxidative phosphorylation and immune activation. ROS can damage cellular components, including lipids, proteins, mitochondria, and DNA. Examples of ROS include: peroxides, superoxide, hydroxyl radical, and singlet oxygen.
A related byproduct, reactive nitrogen species, is also produced naturally by the immune system. Examples of RNS include nitric oxide, peroxynitrite, and nitrogen dioxide.
The two species are often collectively referred to as ROS/RNS. Preventing and efficiently repairing damage from ROS (oxidative stress) and RNS (nitrosative stress) are among the key challenges our cells face in their fight against diseases of aging, including cancer.
The maximum rate of oxygen consumption as measured during incremental exercise and indicates the aerobic fitness of an individual, and plays a role in endurance capacity during prolonged, submaximal exercise.
Learn more about the advantages of a premium membership by clicking below.
The FoundMyFitness Q&A happens monthly for premium members. Attend live or listen in our exclusive member-only podcast The Aliquot.