A blueprint for choosing the right fish oil supplement — filled with specific recommendations, guidelines for interpreting testing data, and dosage protocols.
This video breaks down, point-by-point what gene polymorphisms you might look at, and how they relate to very specific micronutrients. A few examples of genes with common polymorphism discussed are MTHFR and folate, NBPF3 and vitamin B6, FUT2 and vitamin B12, BCMO1 and beta-carotene, FADS2 and omega-3 fatty acids, CYP2R1 and vitamin D, PEMT and choline as well as APOE4 and FOXO3.
"Approximately 25% of the population has the ApoE4 varient, which is associated with high circulating levels of LDL cholesterol and a 2 to 3-fold increased risk of Alzheimer’s disease." Click To Tweet
"Individuals heterozygous for both BCMO1 SNPs rs12934922 and rs7501331 have 69% reduced capacity to convert carotenoids like beta-carotene into retinal. The distribution for these SNPs are 42% and 24%, respectively." Click To Tweet
A lipoprotein produced in the liver and the brain. In the brain, ApoE transports fatty acids and cholesterol to neurons. In the bloodstream, it binds and transports cholesterol, bringing it to tissues and recycling it back to the liver. Approximately 25% of people carry a genetic variant of this lipoprotein called ApoE4, which is associated with higher circulating levels of LDL cholesterol and a 2- to 3-fold increased risk of developing Alzheimer's disease.
A type of water-soluble B-vitamin, also called vitamin B9. Folate is critical in the metabolism of nucleic acid precursors and several amino acids, as well as in methylation reactions. Severe deficiency in folate can cause megaloblastic anemia, which causes fatigue, weakness, and shortness of breath. Certain genetic variations in folate metabolism, particularly those found in the 5,10-methylenetetrahydrofolate reductase (MTHFR) gene influences folate status. Inadequate folate status during early pregnancy increases the risk of certain birth defects called neural tube defects, or NTDs, such as spina bifida, anencephaly, and other similar conditions. Folate deficiency and elevated concentrations of homocysteine in the blood are associated with increased risk of cardiovascular disease. Low folate status and/or high homocysteine concentrations are associated with cognitive dysfunction in aging (from mild impairments to dementia). The synthetic form of folate is called folic acid. Sources of folate include most fruits and vegetables, especially green leafy vegetables.
A protein that provides the instructions for genes responsible for the regulation of cellular replication, resistance to oxidative stress, metabolism, and DNA repair. FOXO3 may play an integral part in both longevity and tumor suppression. Variants of FOXO3 are associated with longevity in humans. Humans with a more active version of this gene have a 2.7-fold increased chance of living to be a centenarian.
The process in which information stored in DNA is converted into instructions for making proteins or other molecules. Gene expression is highly regulated. It allows a cell to respond to factors in its environment and involves two processes: transcription and translation. Gene expression can be turned on or off, or it can simply be increased or decreased.
A gene coding for an enzyme that converts homocysteine into methionine; a critical step in the methyl cycle. Natural variation in this gene is common among healthy people, however, some variants have been reported to influence susceptibility to occlusive vascular disease, neural tube defects, Alzheimer’s disease and other forms of dementia, colon cancer, and acute leukemia.
A change in one nucleotide DNA sequence in a gene that may or may not alter the function of the gene. SNPs, commonly called "snips," can affect phenotype such as hair and eye color, but they can also affect a person's disease risk, absorption and metabolism of nutrients, and much more. SNPs differ from mutations in terms of their frequency within a population: SNPs are detectable in >1 percent of the population, while mutations are detectable in <1 percent.
Theory proposed by Dr. Bruce Ames which proposes that when the body is deficient in a micronutrient it will allocate its scarce supply to enzymes necessary for short-term survival and reproduction at the cost of long-term survival enzymes. This may result in the acceleration of the aging process.
If you enjoy the fruits of , you can participate in helping us to keep improving it. Creating a premium subscription does just that! Plus, we throw in occasional member perks and, more importantly, churn out the best possible content without concerning ourselves with the wishes of any dark overlords.