BACKGROUND. The circadian clock is a fundamental and pervasive biological program that coordinates 24-hour rhythms in physiology, metabolism and behaviour, and it is essential to health. Whereas time-of-day adapted therapy is increasingly reported to be highly successful, it needs to be personalized since internal circadian time is different for each individual. In addition, internal time is not a stable trait, but is influenced by many factors including genetic predisposition, age, gender, environmental light levels and season. An easy and convenient diagnostic tool is currently missing.
METHODS. To establish a validated test, we followed a three-stage biomarker development strategy: (i) using circadian transcriptomics of blood monocytes from 12 individuals in a constant routine protocol combined with machine learning approaches, we identified biomarkers for internal time; (ii) these biomarkers were migrated to a clinically relevant gene expression-profiling platform (NanoString), and (iii) externally validated using an independent study with 28 early or late chronotypes.
RESULTS. We developed a highly accurate and simple assay (BodyTime) to estimate the internal circadian time in humans from a single blood sample. Our assay needs only a small set of blood-based transcript biomarkers and is as accurate as the current gold standard dim light melatonin onset method at smaller monetary, time and sample number cost.