This episode will make a great companion for a long drive.
An essential checklist for cognitive longevity — filled with specific exercise, heat stress, and omega-3 protocols for boosting BDNF. Enter your email, and we'll deliver it straight to your inbox.
A growing body of evidence suggests that exogenous lactate or beta-hydroxybutyrate may be useful in the treatment of traumatic brain injury. These compounds allow glucose to be spared as an energy source and instead be utilized in the synthesis of the antioxidant glutathione, which is vital following a brain injury. In this clip, Dr. Peter Attia describes the potential use of lactate or beta-hydroxybutyrate in the treatment of traumatic brain injury.
Rhonda: Back to the lactate thing, very interesting. Yeah, so read up on this, you know. George Brooks, a friend of mine, he's working now with some other physicians at UCLA looking at the effects of actually exogenous lactate on helping treat TBI. Because TBI...
Peter: Why not just exogenous BHB?
Rhonda: Or, yeah, or that, exactly.
Peter: I mean have you see what Dom D'Agostino has done?
Rhonda: I think I've read one of his studies on cancer. I think it was cancer.
Peter: Yeah. You should see Dom's work in TBI.
Rhonda: So this...oh, in TBI?
Peter: Yeah. That's how he got started.
Rhonda: That they're the same?
Peter: He's a neurobiologist.
Rhonda: Oh, okay.
Peter: The only reason he's in cancer now is because...he started out working a neurobiology...
Rhonda: Interesting.
Peter: ...and using TBI models.
Rhonda: I didn't know that. Yeah, but it's the same thing, lactate, beta-hydroxybutyrate, it doesn't matter. They're going through the MCT...
Peter: Yeah, they're completely overcoming head trauma.
Rhonda: Yeah, they're both doing similar things. They're both thermodynamically favorable, they allow glucose sparing, they allow glucose to then be used to make glutathione, which is important in the brain when you have damage. But what's interesting is that TBI also disrupts astrocytes' ability to make lactate. And what I'm wondering when you were talking about...
Peter: But those two might just synergize.
Rhonda: They might.
Peter: Because I also think the trauma causes an oxidative stress, so I think what's happening is pyruvate dehydrogenase is getting interrupted and all of a sudden you're having a transient but violent interruption of energy to the brain. And this is obviously of high interest to the military because of blast injuries, and Dom would know this, so it's absolutely worth talking about this with him. I'm sure the DoD is all over this. I hope the DoD is all over this because the interesting question is, do you have to have the BHB or the lactate in your system at the time of injury to prevent it, or can administration be done immediately following the trauma?
Rhonda: Or is there a kinetics? Is there a certain time? I think because of the fact that it allows glucose sparing which if you have a trauma is...and this has been shown on animal models for TBI, but this was done by putting glutathione transcranially which obviously is not going to happen. But anyways, they could prevent, like, over 50% of the damage because they were able to sequester the reactive oxygen species that start to cause all the damage in the inflammatory pathways that start to get out of control.
So I think that if you allow that glucose to be used for the pentose phosphate pathway within a certain time frame...I don't know what that time frame is. It was something within a couple of hours. Then, independent of allowing you neurons to get this easier source of energy...if the neurons are using glucose because they need energy but the glucose can't be used to repair that damage to the pentose phosphate pathway, I think that's one component of it in terms of the temporal effects, like how soon after the damage.
Star-shaped cells found in the brain and spinal cord. Astrocytes facilitate neurotransmission, provide nutrients to neurons, maintain neuronal ion balance, and support the blood-brain barrier. Astrocytes also play a role in the repair and scarring process of the brain and spinal cord following traumatic injuries.
A chemical produced in the liver via the breakdown of fatty acids. Beta-hydroxybutyrate is a type of ketone body. It can be used to produce energy inside the mitochondria and acts as a signaling molecule that alters gene expression by inhibiting a class of enzymes known as histone deacetylases.
A survival mechanism the brain relies on during starvation. Glucose sparing occurs when the body utilizes fatty acids as its primary fuel and produces ketone bodies. The ketone bodies cross the blood-brain barrier and are used instead of glucose, thereby “sparing” glucose for use in other metabolic pathways, such as the pentose-phosphate pathway, which produces NADPH. NADPH is essential for the production of glutathione, one of the major antioxidants used in the body and brain.
An antioxidant compound produced by the body’s cells. Glutathione helps prevent damage from oxidative stress caused by the production of reactive oxygen species.
Lactate is thought to participate in a sort of "lactate shuttle" where, after being produced in muscle from exercise, it is transported in to tissues like the heart, and brain, where it is used as an energy source. Lactate is one of many molecules that falls under a loose group of molecules referred to as exerkines, a broad group of exercise-induced hormonal-like factors. Evidence suggests that lactate is the preferred fuel of the brain. Additionally, rodent studies suggest that lactate mediates some of the benefits of exercise on learning and memory via inducing neuronal brain-derived neurotrophic factor (BDNF) expression.[1] In clinical studies, lactate shows promise as a treatment for inflammatory conditions including traumatic brain injury and as a means to deliver fuel to working muscles.
A result of oxidative metabolism, which causes damage to DNA, lipids, proteins, mitochondria, and the cell. Oxidative stress occurs through the process of oxidative phosphorylation (the generation of energy) in mitochondria. It can also result from the generation of hypochlorite during immune activation.
An alternate pathway for the oxidation of glucose. The pentose phosphate pathway parallels glycolysis, but does not require or produce ATP; rather, it produces NADPH, which is necessary to create the cellular antioxidant glutathione. Like glycolysis, the pentose phosphate pathway occurs in the cytoplasm.
One of the enzymes involved in the process of converting pyruvate, which is derived from glucose, into energy in the form of ATP inside of the mitochondria.
Oxygen-containing chemically-reactive molecules generated by oxidative phosphorylation and immune activation. ROS can damage cellular components, including lipids, proteins, mitochondria, and DNA. Examples of ROS include: peroxides, superoxide, hydroxyl radical, and singlet oxygen.
A related byproduct, reactive nitrogen species, is also produced naturally by the immune system. Examples of RNS include nitric oxide, peroxynitrite, and nitrogen dioxide.
The two species are often collectively referred to as ROS/RNS. Preventing and efficiently repairing damage from ROS (oxidative stress) and RNS (nitrosative stress) are among the key challenges our cells face in their fight against diseases of aging, including cancer.
Damage to the brain caused by a sudden blow, penetrating injury, or lack of oxygen, ranging from mild to severe. TBIs can induce a wide range of short- or long-term changes in the brain that affect thinking, sensation, language, personality, and emotion. In addition, TBI may increase the risk for developing epilepsy, Alzheimer’s disease, Parkinson’s disease, and other brain disorders. Nearly 75 percent of TBIs that occur each year are concussions or other forms of mild TBI. Even mild TBIs damage the delicate tissues and blood vessels of the brain and can result in altered brain function that can persist for days, weeks, or months. Approximately 15 percent of concussed athletes experience symptoms as long as one year after their injury, a condition called persistent post-concussion syndrome, or PPCS, typically after returning to play too quickly.
Learn more about the advantages of a premium membership by clicking below.
The FoundMyFitness Q&A happens monthly for premium members. Attend live or listen in our exclusive member-only podcast The Aliquot.