This episode will make a great companion for a long drive.
A blueprint for choosing the right fish oil supplement — filled with specific recommendations, guidelines for interpreting testing data, and dosage protocols.
A growing body of scientific evidence suggests that both fasting and the body's circadian rhythms are factors in the body's ability to repair DNA damage. Periods without eating can enable the body to rest and clear away damaged cells, which secrete compounds that contribute to inflammation. In this clip, Dr. Ruth Patterson describes how eating following the body's circadian clock, eating during the day and fasting at night, enables the body to focus on repair rather than on the digestion of food.
Rhonda: We've been talking a lot about inflammation and these fasting blood glucose levels, fasting insulin. And it just hit, I remember having a conversation with Dr. Panda, and he mentioned something to me that I wasn't aware of about repair mechanisms and fasting. I knew that repair mechanisms were regulated by the circadian rhythm, and I always knew that when you sleep is when you're repairing a lot of damage.
Ruth: Right.
Rhonda: But it didn't occur to me that also when you sleep is when you're fasting.
Ruth: Right.
Rhonda: And he had mentioned that there's something inherently important about fasting and repair mechanisms. And so, you know, which of course that kind of made me think, wow, that that's really interesting, I never thought about it like that. But if you think about, you know, that the timing of these repair mechanisms and fasting and how, you're repairing damaged, DNA repair mechanisms and also these autophagy, clearing away damaged cells, damaged cells secrete inflammatory mediators. So if you're clearing away the cells that are damaged and secreting more, you know, inflammatory molecules, then possibly that would, you know, the lower the inflammation. But it's really interesting how your data suggested that it really had to occur earlier in the evening.
Ruth: Right.
Rhonda: Do you have any speculation as to why that is?
Ruth: Oh, I suppose we really do think that your body works best when its aligned with the circadian rhythm. But I think that is a really good observation. Certainly, the parallel I tend to think of is, you know, we work out, we actually hurt our muscles. And the muscles don't repair and get stronger unless we stop. We have to stop, we have to give them a rest period. And the same thing, eating is metabolism, there's a lot of oxidative damage that happens just as we eat. And then the theory is that you need a time off from that damage for the repair mechanisms to come in. So it's an interesting observation in parallel. Personally, I don't...I think that's a little molecular for my research, but, yeah, I think it's a good parallel to compare it with like working out.
Rhonda: Yeah, that is, actually. You know, like you mentioned you need a repair time. Stress can activate stress response pathways that can be beneficial, like in the case of exercise.
Ruth: Right.
Rhonda: But if you keep on stressing yourself...
Ruth: You actually get weaker.
Rhonda: Right. There will... You know, repair. [inaudible 00:27:12] stress.
Ruth: You do need to time off.
Rhonda: Right.
Ruth: Right. Exactly.
An intracellular degradation system involved in the disassembly and recycling of unnecessary or dysfunctional cellular components. Autophagy participates in cell death, a process known as autophagic dell death. Prolonged fasting is a robust initiator of autophagy and may help protect against cancer and even aging by reducing the burden of abnormal cells.
The relationship between autophagy and cancer is complex, however. Autophagy may prevent the survival of pre-malignant cells, but can also be hijacked as a malignant adaptation by cancer, providing a useful means to scavenge resources needed for further growth.
The body’s 24-hour cycles of biological, hormonal, and behavioral patterns. Circadian rhythms modulate a wide array of physiological processes, including the body’s production of hormones that regulate sleep, hunger, metabolism, and others, ultimately influencing body weight, performance, and susceptibility to disease. As much as 80 percent of gene expression in mammals is under circadian control, including genes in the brain, liver, and muscle.[1] Consequently, circadian rhythmicity may have profound implications for human healthspan.
A major contributing factor to aging, cellular senescence, and the development of cancer. Byproducts of both mitochondrial energy production and immune activity are major sources of DNA damage. Additionally, environmental stressors can increase this base level of damage. DNA damage can be mitigated by cellular repair processes; however, the effectiveness of these processes may be influenced by the availability of dietary minerals, such as magnesium, and other dietary components, which are needed for proper function of repair enzymes.
A critical element of the body’s immune response. Inflammation occurs when the body is exposed to harmful stimuli, such as pathogens, damaged cells, or irritants. It is a protective response that involves immune cells, cell-signaling proteins, and pro-inflammatory factors. Acute inflammation occurs after minor injuries or infections and is characterized by local redness, swelling, or fever. Chronic inflammation occurs on the cellular level in response to toxins or other stressors and is often “invisible.” It plays a key role in the development of many chronic diseases, including cancer, cardiovascular disease, and diabetes.
A peptide hormone secreted by the beta cells of the pancreatic islets cells. Insulin maintains normal blood glucose levels by facilitating the uptake of glucose into cells; regulating carbohydrate, lipid, and protein metabolism; and promoting cell division and growth. Insulin resistance, a characteristic of type 2 diabetes, is a condition in which normal insulin levels do not produce a biological response, which can lead to high blood glucose levels.
The thousands of biochemical processes that run all of the various cellular processes that produce energy. Since energy generation is so fundamental to all other processes, in some cases the word metabolism may refer more broadly to the sum of all chemical reactions in the cell.
A result of oxidative metabolism, which causes damage to DNA, lipids, proteins, mitochondria, and the cell. Oxidative stress occurs through the process of oxidative phosphorylation (the generation of energy) in mitochondria. It can also result from the generation of hypochlorite during immune activation.
Learn more about the advantages of a premium membership by clicking below.
If you enjoy the fruits of , you can participate in helping us to keep improving it. Creating a premium subscription does just that! Plus, we throw in occasional member perks and, more importantly, churn out the best possible content without concerning ourselves with the wishes of any dark overlords.